This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subgroup sum function (for a group or vector space). (Contributed by NM, 28-Jan-2014) (Revised by Mario Carneiro, 19-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | lsmfval.v | |- B = ( Base ` G ) |
|
| lsmfval.a | |- .+ = ( +g ` G ) |
||
| lsmfval.s | |- .(+) = ( LSSum ` G ) |
||
| Assertion | lsmfval | |- ( G e. V -> .(+) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lsmfval.v | |- B = ( Base ` G ) |
|
| 2 | lsmfval.a | |- .+ = ( +g ` G ) |
|
| 3 | lsmfval.s | |- .(+) = ( LSSum ` G ) |
|
| 4 | elex | |- ( G e. V -> G e. _V ) |
|
| 5 | fveq2 | |- ( w = G -> ( Base ` w ) = ( Base ` G ) ) |
|
| 6 | 5 1 | eqtr4di | |- ( w = G -> ( Base ` w ) = B ) |
| 7 | 6 | pweqd | |- ( w = G -> ~P ( Base ` w ) = ~P B ) |
| 8 | fveq2 | |- ( w = G -> ( +g ` w ) = ( +g ` G ) ) |
|
| 9 | 8 2 | eqtr4di | |- ( w = G -> ( +g ` w ) = .+ ) |
| 10 | 9 | oveqd | |- ( w = G -> ( x ( +g ` w ) y ) = ( x .+ y ) ) |
| 11 | 10 | mpoeq3dv | |- ( w = G -> ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) = ( x e. t , y e. u |-> ( x .+ y ) ) ) |
| 12 | 11 | rneqd | |- ( w = G -> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) = ran ( x e. t , y e. u |-> ( x .+ y ) ) ) |
| 13 | 7 7 12 | mpoeq123dv | |- ( w = G -> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |
| 14 | df-lsm | |- LSSum = ( w e. _V |-> ( t e. ~P ( Base ` w ) , u e. ~P ( Base ` w ) |-> ran ( x e. t , y e. u |-> ( x ( +g ` w ) y ) ) ) ) |
|
| 15 | 1 | fvexi | |- B e. _V |
| 16 | 15 | pwex | |- ~P B e. _V |
| 17 | 16 16 | mpoex | |- ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) e. _V |
| 18 | 13 14 17 | fvmpt | |- ( G e. _V -> ( LSSum ` G ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |
| 19 | 4 18 | syl | |- ( G e. V -> ( LSSum ` G ) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |
| 20 | 3 19 | eqtrid | |- ( G e. V -> .(+) = ( t e. ~P B , u e. ~P B |-> ran ( x e. t , y e. u |-> ( x .+ y ) ) ) ) |