This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The domain of an operation defined by maps-to notation is a relation. (Contributed by Stefan O'Rear, 27-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| Assertion | reldmmpo | |- Rel dom F |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rngop.1 | |- F = ( x e. A , y e. B |-> C ) |
|
| 2 | reldmoprab | |- Rel dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 3 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
|
| 4 | 1 3 | eqtri | |- F = { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 5 | 4 | dmeqi | |- dom F = dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } |
| 6 | 5 | releqi | |- ( Rel dom F <-> Rel dom { <. <. x , y >. , z >. | ( ( x e. A /\ y e. B ) /\ z = C ) } ) |
| 7 | 2 6 | mpbir | |- Rel dom F |