This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A mapping operation with empty domain is empty. Generalization of mpo0 . (Contributed by AV, 27-Jan-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 0mpo0 | |- ( ( A = (/) \/ B = (/) ) -> ( x e. A , y e. B |-> C ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mpo | |- ( x e. A , y e. B |-> C ) = { <. <. x , y >. , w >. | ( ( x e. A /\ y e. B ) /\ w = C ) } |
|
| 2 | df-oprab | |- { <. <. x , y >. , w >. | ( ( x e. A /\ y e. B ) /\ w = C ) } = { z | E. x E. y E. w ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) } |
|
| 3 | 1 2 | eqtri | |- ( x e. A , y e. B |-> C ) = { z | E. x E. y E. w ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) } |
| 4 | nel02 | |- ( A = (/) -> -. x e. A ) |
|
| 5 | nel02 | |- ( B = (/) -> -. y e. B ) |
|
| 6 | 4 5 | orim12i | |- ( ( A = (/) \/ B = (/) ) -> ( -. x e. A \/ -. y e. B ) ) |
| 7 | ianor | |- ( -. ( x e. A /\ y e. B ) <-> ( -. x e. A \/ -. y e. B ) ) |
|
| 8 | 6 7 | sylibr | |- ( ( A = (/) \/ B = (/) ) -> -. ( x e. A /\ y e. B ) ) |
| 9 | simprl | |- ( ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) -> ( x e. A /\ y e. B ) ) |
|
| 10 | 8 9 | nsyl | |- ( ( A = (/) \/ B = (/) ) -> -. ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 11 | 10 | nexdv | |- ( ( A = (/) \/ B = (/) ) -> -. E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 12 | 11 | nexdv | |- ( ( A = (/) \/ B = (/) ) -> -. E. y E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 13 | 12 | nexdv | |- ( ( A = (/) \/ B = (/) ) -> -. E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 14 | 13 | alrimiv | |- ( ( A = (/) \/ B = (/) ) -> A. v -. E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 15 | eqeq1 | |- ( z = v -> ( z = <. <. x , y >. , w >. <-> v = <. <. x , y >. , w >. ) ) |
|
| 16 | 15 | anbi1d | |- ( z = v -> ( ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) <-> ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) ) |
| 17 | 16 | 3exbidv | |- ( z = v -> ( E. x E. y E. w ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) <-> E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) ) |
| 18 | 17 | ab0w | |- ( { z | E. x E. y E. w ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) } = (/) <-> A. v -. E. x E. y E. w ( v = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) ) |
| 19 | 14 18 | sylibr | |- ( ( A = (/) \/ B = (/) ) -> { z | E. x E. y E. w ( z = <. <. x , y >. , w >. /\ ( ( x e. A /\ y e. B ) /\ w = C ) ) } = (/) ) |
| 20 | 3 19 | eqtrid | |- ( ( A = (/) \/ B = (/) ) -> ( x e. A , y e. B |-> C ) = (/) ) |