This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If a set dominates a finite set, it cannot also be strictly dominated by the finite set. This theorem is proved without using the Axiom of Power Sets (unlike domnsym ). (Contributed by BTernaryTau, 22-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domnsymfi | |- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | brdom2 | |- ( A ~<_ B <-> ( A ~< B \/ A ~~ B ) ) |
|
| 2 | sdomnen | |- ( A ~< B -> -. A ~~ B ) |
|
| 3 | 2 | adantl | |- ( ( A e. Fin /\ A ~< B ) -> -. A ~~ B ) |
| 4 | sdomdom | |- ( A ~< B -> A ~<_ B ) |
|
| 5 | sdomdom | |- ( B ~< A -> B ~<_ A ) |
|
| 6 | sbthfi | |- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> B ~~ A ) |
|
| 7 | ensymfib | |- ( A e. Fin -> ( A ~~ B <-> B ~~ A ) ) |
|
| 8 | 7 | 3ad2ant1 | |- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> ( A ~~ B <-> B ~~ A ) ) |
| 9 | 6 8 | mpbird | |- ( ( A e. Fin /\ B ~<_ A /\ A ~<_ B ) -> A ~~ B ) |
| 10 | 5 9 | syl3an2 | |- ( ( A e. Fin /\ B ~< A /\ A ~<_ B ) -> A ~~ B ) |
| 11 | 4 10 | syl3an3 | |- ( ( A e. Fin /\ B ~< A /\ A ~< B ) -> A ~~ B ) |
| 12 | 11 | 3com23 | |- ( ( A e. Fin /\ A ~< B /\ B ~< A ) -> A ~~ B ) |
| 13 | 12 | 3expa | |- ( ( ( A e. Fin /\ A ~< B ) /\ B ~< A ) -> A ~~ B ) |
| 14 | 3 13 | mtand | |- ( ( A e. Fin /\ A ~< B ) -> -. B ~< A ) |
| 15 | sdomnen | |- ( B ~< A -> -. B ~~ A ) |
|
| 16 | 7 | biimpa | |- ( ( A e. Fin /\ A ~~ B ) -> B ~~ A ) |
| 17 | 15 16 | nsyl3 | |- ( ( A e. Fin /\ A ~~ B ) -> -. B ~< A ) |
| 18 | 14 17 | jaodan | |- ( ( A e. Fin /\ ( A ~< B \/ A ~~ B ) ) -> -. B ~< A ) |
| 19 | 1 18 | sylan2b | |- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |