This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cardinal ordering agrees with ordinal number ordering when the smaller number is a natural number. Compare with nndomo when both are natural numbers. (Contributed by NM, 17-Jun-1998) Generalize from nndomo . (Revised by RP, 5-Nov-2023) Avoid ax-pow . (Revised by BTernaryTau, 29-Nov-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nndomog | |- ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nnfi | |- ( A e. _om -> A e. Fin ) |
|
| 2 | domnsymfi | |- ( ( A e. Fin /\ A ~<_ B ) -> -. B ~< A ) |
|
| 3 | 1 2 | sylan | |- ( ( A e. _om /\ A ~<_ B ) -> -. B ~< A ) |
| 4 | 3 | ex | |- ( A e. _om -> ( A ~<_ B -> -. B ~< A ) ) |
| 5 | php2 | |- ( ( A e. _om /\ B C. A ) -> B ~< A ) |
|
| 6 | 5 | ex | |- ( A e. _om -> ( B C. A -> B ~< A ) ) |
| 7 | 4 6 | nsyld | |- ( A e. _om -> ( A ~<_ B -> -. B C. A ) ) |
| 8 | 7 | adantr | |- ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> -. B C. A ) ) |
| 9 | nnord | |- ( A e. _om -> Ord A ) |
|
| 10 | eloni | |- ( B e. On -> Ord B ) |
|
| 11 | ordtri1 | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B e. A ) ) |
|
| 12 | ordelpss | |- ( ( Ord B /\ Ord A ) -> ( B e. A <-> B C. A ) ) |
|
| 13 | 12 | ancoms | |- ( ( Ord A /\ Ord B ) -> ( B e. A <-> B C. A ) ) |
| 14 | 13 | notbid | |- ( ( Ord A /\ Ord B ) -> ( -. B e. A <-> -. B C. A ) ) |
| 15 | 11 14 | bitrd | |- ( ( Ord A /\ Ord B ) -> ( A C_ B <-> -. B C. A ) ) |
| 16 | 9 10 15 | syl2an | |- ( ( A e. _om /\ B e. On ) -> ( A C_ B <-> -. B C. A ) ) |
| 17 | 8 16 | sylibrd | |- ( ( A e. _om /\ B e. On ) -> ( A ~<_ B -> A C_ B ) ) |
| 18 | ssdomfi2 | |- ( ( A e. Fin /\ B e. On /\ A C_ B ) -> A ~<_ B ) |
|
| 19 | 18 | 3expia | |- ( ( A e. Fin /\ B e. On ) -> ( A C_ B -> A ~<_ B ) ) |
| 20 | 1 19 | sylan | |- ( ( A e. _om /\ B e. On ) -> ( A C_ B -> A ~<_ B ) ) |
| 21 | 17 20 | impbid | |- ( ( A e. _om /\ B e. On ) -> ( A ~<_ B <-> A C_ B ) ) |