This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An ordinal number is finite iff it is a natural number. Proposition 10.32 of TakeutiZaring p. 92. (Contributed by NM, 26-Jul-2004)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | onfin | |- ( A e. On -> ( A e. Fin <-> A e. _om ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isfi | |- ( A e. Fin <-> E. x e. _om A ~~ x ) |
|
| 2 | onomeneq | |- ( ( A e. On /\ x e. _om ) -> ( A ~~ x <-> A = x ) ) |
|
| 3 | eleq1a | |- ( x e. _om -> ( A = x -> A e. _om ) ) |
|
| 4 | 3 | adantl | |- ( ( A e. On /\ x e. _om ) -> ( A = x -> A e. _om ) ) |
| 5 | 2 4 | sylbid | |- ( ( A e. On /\ x e. _om ) -> ( A ~~ x -> A e. _om ) ) |
| 6 | 5 | rexlimdva | |- ( A e. On -> ( E. x e. _om A ~~ x -> A e. _om ) ) |
| 7 | enrefnn | |- ( A e. _om -> A ~~ A ) |
|
| 8 | breq2 | |- ( x = A -> ( A ~~ x <-> A ~~ A ) ) |
|
| 9 | 8 | rspcev | |- ( ( A e. _om /\ A ~~ A ) -> E. x e. _om A ~~ x ) |
| 10 | 7 9 | mpdan | |- ( A e. _om -> E. x e. _om A ~~ x ) |
| 11 | 6 10 | impbid1 | |- ( A e. On -> ( E. x e. _om A ~~ x <-> A e. _om ) ) |
| 12 | 1 11 | bitrid | |- ( A e. On -> ( A e. Fin <-> A e. _om ) ) |