This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity is reflexive for finite ordinals, proved without using the Axiom of Power Sets (unlike enrefg ). (Contributed by BTernaryTau, 31-Jul-2024)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | enrefnn | |- ( A e. _om -> A ~~ A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( x = (/) -> x = (/) ) |
|
| 2 | 1 1 | breq12d | |- ( x = (/) -> ( x ~~ x <-> (/) ~~ (/) ) ) |
| 3 | id | |- ( x = y -> x = y ) |
|
| 4 | 3 3 | breq12d | |- ( x = y -> ( x ~~ x <-> y ~~ y ) ) |
| 5 | id | |- ( x = suc y -> x = suc y ) |
|
| 6 | 5 5 | breq12d | |- ( x = suc y -> ( x ~~ x <-> suc y ~~ suc y ) ) |
| 7 | id | |- ( x = A -> x = A ) |
|
| 8 | 7 7 | breq12d | |- ( x = A -> ( x ~~ x <-> A ~~ A ) ) |
| 9 | eqid | |- (/) = (/) |
|
| 10 | en0 | |- ( (/) ~~ (/) <-> (/) = (/) ) |
|
| 11 | 9 10 | mpbir | |- (/) ~~ (/) |
| 12 | en2sn | |- ( ( y e. _V /\ y e. _V ) -> { y } ~~ { y } ) |
|
| 13 | 12 | el2v | |- { y } ~~ { y } |
| 14 | 13 | jctr | |- ( y ~~ y -> ( y ~~ y /\ { y } ~~ { y } ) ) |
| 15 | nnord | |- ( y e. _om -> Ord y ) |
|
| 16 | orddisj | |- ( Ord y -> ( y i^i { y } ) = (/) ) |
|
| 17 | 15 16 | syl | |- ( y e. _om -> ( y i^i { y } ) = (/) ) |
| 18 | 17 17 | jca | |- ( y e. _om -> ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) ) |
| 19 | unen | |- ( ( ( y ~~ y /\ { y } ~~ { y } ) /\ ( ( y i^i { y } ) = (/) /\ ( y i^i { y } ) = (/) ) ) -> ( y u. { y } ) ~~ ( y u. { y } ) ) |
|
| 20 | 14 18 19 | syl2anr | |- ( ( y e. _om /\ y ~~ y ) -> ( y u. { y } ) ~~ ( y u. { y } ) ) |
| 21 | df-suc | |- suc y = ( y u. { y } ) |
|
| 22 | 20 21 21 | 3brtr4g | |- ( ( y e. _om /\ y ~~ y ) -> suc y ~~ suc y ) |
| 23 | 22 | ex | |- ( y e. _om -> ( y ~~ y -> suc y ~~ suc y ) ) |
| 24 | 2 4 6 8 11 23 | finds | |- ( A e. _om -> A ~~ A ) |