This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: In an ordered monoid, the ordering is compatible with group addition. (Contributed by Thierry Arnoux, 30-Jan-2018)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | omndadd.0 | |- B = ( Base ` M ) |
|
| omndadd.1 | |- .<_ = ( le ` M ) |
||
| omndadd.2 | |- .+ = ( +g ` M ) |
||
| Assertion | omndadd | |- ( ( M e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X .+ Z ) .<_ ( Y .+ Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | omndadd.0 | |- B = ( Base ` M ) |
|
| 2 | omndadd.1 | |- .<_ = ( le ` M ) |
|
| 3 | omndadd.2 | |- .+ = ( +g ` M ) |
|
| 4 | 1 3 2 | isomnd | |- ( M e. oMnd <-> ( M e. Mnd /\ M e. Toset /\ A. a e. B A. b e. B A. c e. B ( a .<_ b -> ( a .+ c ) .<_ ( b .+ c ) ) ) ) |
| 5 | 4 | simp3bi | |- ( M e. oMnd -> A. a e. B A. b e. B A. c e. B ( a .<_ b -> ( a .+ c ) .<_ ( b .+ c ) ) ) |
| 6 | breq1 | |- ( a = X -> ( a .<_ b <-> X .<_ b ) ) |
|
| 7 | oveq1 | |- ( a = X -> ( a .+ c ) = ( X .+ c ) ) |
|
| 8 | 7 | breq1d | |- ( a = X -> ( ( a .+ c ) .<_ ( b .+ c ) <-> ( X .+ c ) .<_ ( b .+ c ) ) ) |
| 9 | 6 8 | imbi12d | |- ( a = X -> ( ( a .<_ b -> ( a .+ c ) .<_ ( b .+ c ) ) <-> ( X .<_ b -> ( X .+ c ) .<_ ( b .+ c ) ) ) ) |
| 10 | breq2 | |- ( b = Y -> ( X .<_ b <-> X .<_ Y ) ) |
|
| 11 | oveq1 | |- ( b = Y -> ( b .+ c ) = ( Y .+ c ) ) |
|
| 12 | 11 | breq2d | |- ( b = Y -> ( ( X .+ c ) .<_ ( b .+ c ) <-> ( X .+ c ) .<_ ( Y .+ c ) ) ) |
| 13 | 10 12 | imbi12d | |- ( b = Y -> ( ( X .<_ b -> ( X .+ c ) .<_ ( b .+ c ) ) <-> ( X .<_ Y -> ( X .+ c ) .<_ ( Y .+ c ) ) ) ) |
| 14 | oveq2 | |- ( c = Z -> ( X .+ c ) = ( X .+ Z ) ) |
|
| 15 | oveq2 | |- ( c = Z -> ( Y .+ c ) = ( Y .+ Z ) ) |
|
| 16 | 14 15 | breq12d | |- ( c = Z -> ( ( X .+ c ) .<_ ( Y .+ c ) <-> ( X .+ Z ) .<_ ( Y .+ Z ) ) ) |
| 17 | 16 | imbi2d | |- ( c = Z -> ( ( X .<_ Y -> ( X .+ c ) .<_ ( Y .+ c ) ) <-> ( X .<_ Y -> ( X .+ Z ) .<_ ( Y .+ Z ) ) ) ) |
| 18 | 9 13 17 | rspc3v | |- ( ( X e. B /\ Y e. B /\ Z e. B ) -> ( A. a e. B A. b e. B A. c e. B ( a .<_ b -> ( a .+ c ) .<_ ( b .+ c ) ) -> ( X .<_ Y -> ( X .+ Z ) .<_ ( Y .+ Z ) ) ) ) |
| 19 | 5 18 | mpan9 | |- ( ( M e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) ) -> ( X .<_ Y -> ( X .+ Z ) .<_ ( Y .+ Z ) ) ) |
| 20 | 19 | 3impia | |- ( ( M e. oMnd /\ ( X e. B /\ Y e. B /\ Z e. B ) /\ X .<_ Y ) -> ( X .+ Z ) .<_ ( Y .+ Z ) ) |