This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for omeu : uniqueness part. (Contributed by Mario Carneiro, 28-Feb-2013) (Revised by Mario Carneiro, 29-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omeulem2 | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( B e. D \/ ( B = D /\ C e. E ) ) -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simp3l | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> D e. On ) |
|
| 2 | eloni | |- ( D e. On -> Ord D ) |
|
| 3 | ordsucss | |- ( Ord D -> ( B e. D -> suc B C_ D ) ) |
|
| 4 | 1 2 3 | 3syl | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( B e. D -> suc B C_ D ) ) |
| 5 | simp2l | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> B e. On ) |
|
| 6 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 7 | 5 6 | syl | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> suc B e. On ) |
| 8 | simp1l | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> A e. On ) |
|
| 9 | simp1r | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> A =/= (/) ) |
|
| 10 | on0eln0 | |- ( A e. On -> ( (/) e. A <-> A =/= (/) ) ) |
|
| 11 | 8 10 | syl | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( (/) e. A <-> A =/= (/) ) ) |
| 12 | 9 11 | mpbird | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> (/) e. A ) |
| 13 | omword | |- ( ( ( suc B e. On /\ D e. On /\ A e. On ) /\ (/) e. A ) -> ( suc B C_ D <-> ( A .o suc B ) C_ ( A .o D ) ) ) |
|
| 14 | 7 1 8 12 13 | syl31anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( suc B C_ D <-> ( A .o suc B ) C_ ( A .o D ) ) ) |
| 15 | 4 14 | sylibd | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( B e. D -> ( A .o suc B ) C_ ( A .o D ) ) ) |
| 16 | omcl | |- ( ( A e. On /\ D e. On ) -> ( A .o D ) e. On ) |
|
| 17 | 8 1 16 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( A .o D ) e. On ) |
| 18 | simp3r | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> E e. A ) |
|
| 19 | onelon | |- ( ( A e. On /\ E e. A ) -> E e. On ) |
|
| 20 | 8 18 19 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> E e. On ) |
| 21 | oaword1 | |- ( ( ( A .o D ) e. On /\ E e. On ) -> ( A .o D ) C_ ( ( A .o D ) +o E ) ) |
|
| 22 | sstr | |- ( ( ( A .o suc B ) C_ ( A .o D ) /\ ( A .o D ) C_ ( ( A .o D ) +o E ) ) -> ( A .o suc B ) C_ ( ( A .o D ) +o E ) ) |
|
| 23 | 22 | expcom | |- ( ( A .o D ) C_ ( ( A .o D ) +o E ) -> ( ( A .o suc B ) C_ ( A .o D ) -> ( A .o suc B ) C_ ( ( A .o D ) +o E ) ) ) |
| 24 | 21 23 | syl | |- ( ( ( A .o D ) e. On /\ E e. On ) -> ( ( A .o suc B ) C_ ( A .o D ) -> ( A .o suc B ) C_ ( ( A .o D ) +o E ) ) ) |
| 25 | 17 20 24 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( A .o suc B ) C_ ( A .o D ) -> ( A .o suc B ) C_ ( ( A .o D ) +o E ) ) ) |
| 26 | 15 25 | syld | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( B e. D -> ( A .o suc B ) C_ ( ( A .o D ) +o E ) ) ) |
| 27 | simp2r | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> C e. A ) |
|
| 28 | onelon | |- ( ( A e. On /\ C e. A ) -> C e. On ) |
|
| 29 | 8 27 28 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> C e. On ) |
| 30 | omcl | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) e. On ) |
|
| 31 | 8 5 30 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( A .o B ) e. On ) |
| 32 | oaord | |- ( ( C e. On /\ A e. On /\ ( A .o B ) e. On ) -> ( C e. A <-> ( ( A .o B ) +o C ) e. ( ( A .o B ) +o A ) ) ) |
|
| 33 | 32 | biimpa | |- ( ( ( C e. On /\ A e. On /\ ( A .o B ) e. On ) /\ C e. A ) -> ( ( A .o B ) +o C ) e. ( ( A .o B ) +o A ) ) |
| 34 | 29 8 31 27 33 | syl31anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( A .o B ) +o C ) e. ( ( A .o B ) +o A ) ) |
| 35 | omsuc | |- ( ( A e. On /\ B e. On ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |
|
| 36 | 8 5 35 | syl2anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |
| 37 | 34 36 | eleqtrrd | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( A .o B ) +o C ) e. ( A .o suc B ) ) |
| 38 | ssel | |- ( ( A .o suc B ) C_ ( ( A .o D ) +o E ) -> ( ( ( A .o B ) +o C ) e. ( A .o suc B ) -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
|
| 39 | 26 37 38 | syl6ci | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( B e. D -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
| 40 | simpr | |- ( ( B = D /\ C e. E ) -> C e. E ) |
|
| 41 | oaord | |- ( ( C e. On /\ E e. On /\ ( A .o B ) e. On ) -> ( C e. E <-> ( ( A .o B ) +o C ) e. ( ( A .o B ) +o E ) ) ) |
|
| 42 | 40 41 | imbitrid | |- ( ( C e. On /\ E e. On /\ ( A .o B ) e. On ) -> ( ( B = D /\ C e. E ) -> ( ( A .o B ) +o C ) e. ( ( A .o B ) +o E ) ) ) |
| 43 | oveq2 | |- ( B = D -> ( A .o B ) = ( A .o D ) ) |
|
| 44 | 43 | oveq1d | |- ( B = D -> ( ( A .o B ) +o E ) = ( ( A .o D ) +o E ) ) |
| 45 | 44 | adantr | |- ( ( B = D /\ C e. E ) -> ( ( A .o B ) +o E ) = ( ( A .o D ) +o E ) ) |
| 46 | 45 | eleq2d | |- ( ( B = D /\ C e. E ) -> ( ( ( A .o B ) +o C ) e. ( ( A .o B ) +o E ) <-> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
| 47 | 42 46 | mpbidi | |- ( ( C e. On /\ E e. On /\ ( A .o B ) e. On ) -> ( ( B = D /\ C e. E ) -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
| 48 | 29 20 31 47 | syl3anc | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( B = D /\ C e. E ) -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |
| 49 | 39 48 | jaod | |- ( ( ( A e. On /\ A =/= (/) ) /\ ( B e. On /\ C e. A ) /\ ( D e. On /\ E e. A ) ) -> ( ( B e. D \/ ( B = D /\ C e. E ) ) -> ( ( A .o B ) +o C ) e. ( ( A .o D ) +o E ) ) ) |