This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Multiplication with successor. Definition 8.15 of TakeutiZaring p. 62. Definition 2.5 of Schloeder p. 4. (Contributed by NM, 17-Sep-1995) (Revised by Mario Carneiro, 8-Sep-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | omsuc | |- ( ( A e. On /\ B e. On ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rdgsuc | |- ( B e. On -> ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) = ( ( x e. _V |-> ( x +o A ) ) ` ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) ) |
|
| 2 | 1 | adantl | |- ( ( A e. On /\ B e. On ) -> ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) = ( ( x e. _V |-> ( x +o A ) ) ` ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) ) |
| 3 | onsuc | |- ( B e. On -> suc B e. On ) |
|
| 4 | omv | |- ( ( A e. On /\ suc B e. On ) -> ( A .o suc B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) ) |
|
| 5 | 3 4 | sylan2 | |- ( ( A e. On /\ B e. On ) -> ( A .o suc B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` suc B ) ) |
| 6 | ovex | |- ( A .o B ) e. _V |
|
| 7 | oveq1 | |- ( x = ( A .o B ) -> ( x +o A ) = ( ( A .o B ) +o A ) ) |
|
| 8 | eqid | |- ( x e. _V |-> ( x +o A ) ) = ( x e. _V |-> ( x +o A ) ) |
|
| 9 | ovex | |- ( ( A .o B ) +o A ) e. _V |
|
| 10 | 7 8 9 | fvmpt | |- ( ( A .o B ) e. _V -> ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( A .o B ) +o A ) ) |
| 11 | 6 10 | ax-mp | |- ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( A .o B ) +o A ) |
| 12 | omv | |- ( ( A e. On /\ B e. On ) -> ( A .o B ) = ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) |
|
| 13 | 12 | fveq2d | |- ( ( A e. On /\ B e. On ) -> ( ( x e. _V |-> ( x +o A ) ) ` ( A .o B ) ) = ( ( x e. _V |-> ( x +o A ) ) ` ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) ) |
| 14 | 11 13 | eqtr3id | |- ( ( A e. On /\ B e. On ) -> ( ( A .o B ) +o A ) = ( ( x e. _V |-> ( x +o A ) ) ` ( rec ( ( x e. _V |-> ( x +o A ) ) , (/) ) ` B ) ) ) |
| 15 | 2 5 14 | 3eqtr4d | |- ( ( A e. On /\ B e. On ) -> ( A .o suc B ) = ( ( A .o B ) +o A ) ) |