This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: When A is a subclass of On , F is a strictly monotone ordinal functions, and it is also complete (it is an isomorphism onto all of A ). The proof avoids ax-rep (the second statement is trivial under ax-rep ). (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oismo.1 | |- F = OrdIso ( _E , A ) |
|
| Assertion | oismo | |- ( A C_ On -> ( Smo F /\ ran F = A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oismo.1 | |- F = OrdIso ( _E , A ) |
|
| 2 | epweon | |- _E We On |
|
| 3 | wess | |- ( A C_ On -> ( _E We On -> _E We A ) ) |
|
| 4 | 2 3 | mpi | |- ( A C_ On -> _E We A ) |
| 5 | epse | |- _E Se A |
|
| 6 | 1 | oiiso2 | |- ( ( _E We A /\ _E Se A ) -> F Isom _E , _E ( dom F , ran F ) ) |
| 7 | 4 5 6 | sylancl | |- ( A C_ On -> F Isom _E , _E ( dom F , ran F ) ) |
| 8 | 1 | oicl | |- Ord dom F |
| 9 | 1 | oif | |- F : dom F --> A |
| 10 | frn | |- ( F : dom F --> A -> ran F C_ A ) |
|
| 11 | 9 10 | ax-mp | |- ran F C_ A |
| 12 | id | |- ( A C_ On -> A C_ On ) |
|
| 13 | 11 12 | sstrid | |- ( A C_ On -> ran F C_ On ) |
| 14 | smoiso2 | |- ( ( Ord dom F /\ ran F C_ On ) -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) |
|
| 15 | 8 13 14 | sylancr | |- ( A C_ On -> ( ( F : dom F -onto-> ran F /\ Smo F ) <-> F Isom _E , _E ( dom F , ran F ) ) ) |
| 16 | 7 15 | mpbird | |- ( A C_ On -> ( F : dom F -onto-> ran F /\ Smo F ) ) |
| 17 | 16 | simprd | |- ( A C_ On -> Smo F ) |
| 18 | 11 | a1i | |- ( A C_ On -> ran F C_ A ) |
| 19 | simprl | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. A ) |
|
| 20 | 4 | adantr | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E We A ) |
| 21 | 5 | a1i | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> _E Se A ) |
| 22 | ffn | |- ( F : dom F --> A -> F Fn dom F ) |
|
| 23 | 9 22 | mp1i | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Fn dom F ) |
| 24 | simplrr | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> -. x e. ran F ) |
|
| 25 | 4 | ad2antrr | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E We A ) |
| 26 | 5 | a1i | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> _E Se A ) |
| 27 | simplrl | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. A ) |
|
| 28 | simpr | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. dom F ) |
|
| 29 | 1 | oiiniseg | |- ( ( ( _E We A /\ _E Se A ) /\ ( x e. A /\ y e. dom F ) ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) |
| 30 | 25 26 27 28 29 | syl22anc | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( F ` y ) _E x \/ x e. ran F ) ) |
| 31 | 30 | ord | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( -. ( F ` y ) _E x -> x e. ran F ) ) |
| 32 | 24 31 | mt3d | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) _E x ) |
| 33 | epel | |- ( ( F ` y ) _E x <-> ( F ` y ) e. x ) |
|
| 34 | 32 33 | sylib | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( F ` y ) e. x ) |
| 35 | 34 | ralrimiva | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> A. y e. dom F ( F ` y ) e. x ) |
| 36 | ffnfv | |- ( F : dom F --> x <-> ( F Fn dom F /\ A. y e. dom F ( F ` y ) e. x ) ) |
|
| 37 | 23 35 36 | sylanbrc | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F : dom F --> x ) |
| 38 | 9 22 | mp1i | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> F Fn dom F ) |
| 39 | 17 | ad2antrr | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> Smo F ) |
| 40 | smogt | |- ( ( F Fn dom F /\ Smo F /\ y e. dom F ) -> y C_ ( F ` y ) ) |
|
| 41 | 38 39 28 40 | syl3anc | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y C_ ( F ` y ) ) |
| 42 | ordelon | |- ( ( Ord dom F /\ y e. dom F ) -> y e. On ) |
|
| 43 | 8 28 42 | sylancr | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. On ) |
| 44 | simpll | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> A C_ On ) |
|
| 45 | 44 27 | sseldd | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> x e. On ) |
| 46 | ontr2 | |- ( ( y e. On /\ x e. On ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) |
|
| 47 | 43 45 46 | syl2anc | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. x ) -> y e. x ) ) |
| 48 | 41 34 47 | mp2and | |- ( ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) /\ y e. dom F ) -> y e. x ) |
| 49 | 48 | ex | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ( y e. dom F -> y e. x ) ) |
| 50 | 49 | ssrdv | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F C_ x ) |
| 51 | 19 50 | ssexd | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> dom F e. _V ) |
| 52 | fex2 | |- ( ( F : dom F --> x /\ dom F e. _V /\ x e. A ) -> F e. _V ) |
|
| 53 | 37 51 19 52 | syl3anc | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F e. _V ) |
| 54 | 1 | ordtype2 | |- ( ( _E We A /\ _E Se A /\ F e. _V ) -> F Isom _E , _E ( dom F , A ) ) |
| 55 | 20 21 53 54 | syl3anc | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> F Isom _E , _E ( dom F , A ) ) |
| 56 | isof1o | |- ( F Isom _E , _E ( dom F , A ) -> F : dom F -1-1-onto-> A ) |
|
| 57 | f1ofo | |- ( F : dom F -1-1-onto-> A -> F : dom F -onto-> A ) |
|
| 58 | forn | |- ( F : dom F -onto-> A -> ran F = A ) |
|
| 59 | 55 56 57 58 | 4syl | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> ran F = A ) |
| 60 | 19 59 | eleqtrrd | |- ( ( A C_ On /\ ( x e. A /\ -. x e. ran F ) ) -> x e. ran F ) |
| 61 | 60 | expr | |- ( ( A C_ On /\ x e. A ) -> ( -. x e. ran F -> x e. ran F ) ) |
| 62 | 61 | pm2.18d | |- ( ( A C_ On /\ x e. A ) -> x e. ran F ) |
| 63 | 18 62 | eqelssd | |- ( A C_ On -> ran F = A ) |
| 64 | 17 63 | jca | |- ( A C_ On -> ( Smo F /\ ran F = A ) ) |