This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A strictly monotone ordinal function is greater than or equal to its argument. Exercise 1 in TakeutiZaring p. 50. (Contributed by Andrew Salmon, 23-Nov-2011) (Revised by Mario Carneiro, 28-Feb-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smogt | |- ( ( F Fn A /\ Smo F /\ C e. A ) -> C C_ ( F ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( x = C -> x = C ) |
|
| 2 | fveq2 | |- ( x = C -> ( F ` x ) = ( F ` C ) ) |
|
| 3 | 1 2 | sseq12d | |- ( x = C -> ( x C_ ( F ` x ) <-> C C_ ( F ` C ) ) ) |
| 4 | 3 | imbi2d | |- ( x = C -> ( ( ( F Fn A /\ Smo F ) -> x C_ ( F ` x ) ) <-> ( ( F Fn A /\ Smo F ) -> C C_ ( F ` C ) ) ) ) |
| 5 | smodm2 | |- ( ( F Fn A /\ Smo F ) -> Ord A ) |
|
| 6 | 5 | 3adant3 | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> Ord A ) |
| 7 | simp3 | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> x e. A ) |
|
| 8 | ordelord | |- ( ( Ord A /\ x e. A ) -> Ord x ) |
|
| 9 | 6 7 8 | syl2anc | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> Ord x ) |
| 10 | vex | |- x e. _V |
|
| 11 | 10 | elon | |- ( x e. On <-> Ord x ) |
| 12 | 9 11 | sylibr | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> x e. On ) |
| 13 | eleq1w | |- ( x = y -> ( x e. A <-> y e. A ) ) |
|
| 14 | 13 | 3anbi3d | |- ( x = y -> ( ( F Fn A /\ Smo F /\ x e. A ) <-> ( F Fn A /\ Smo F /\ y e. A ) ) ) |
| 15 | id | |- ( x = y -> x = y ) |
|
| 16 | fveq2 | |- ( x = y -> ( F ` x ) = ( F ` y ) ) |
|
| 17 | 15 16 | sseq12d | |- ( x = y -> ( x C_ ( F ` x ) <-> y C_ ( F ` y ) ) ) |
| 18 | 14 17 | imbi12d | |- ( x = y -> ( ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) <-> ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) ) ) |
| 19 | simpl1 | |- ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> F Fn A ) |
|
| 20 | simpl2 | |- ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> Smo F ) |
|
| 21 | ordtr1 | |- ( Ord A -> ( ( y e. x /\ x e. A ) -> y e. A ) ) |
|
| 22 | 21 | expcomd | |- ( Ord A -> ( x e. A -> ( y e. x -> y e. A ) ) ) |
| 23 | 6 7 22 | sylc | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> ( y e. x -> y e. A ) ) |
| 24 | 23 | imp | |- ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> y e. A ) |
| 25 | pm2.27 | |- ( ( F Fn A /\ Smo F /\ y e. A ) -> ( ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> y C_ ( F ` y ) ) ) |
|
| 26 | 19 20 24 25 | syl3anc | |- ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> ( ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> y C_ ( F ` y ) ) ) |
| 27 | 26 | ralimdva | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> A. y e. x y C_ ( F ` y ) ) ) |
| 28 | 5 | 3adant3 | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord A ) |
| 29 | simp31 | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> x e. A ) |
|
| 30 | 28 29 8 | syl2anc | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord x ) |
| 31 | simp32 | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y e. x ) |
|
| 32 | ordelord | |- ( ( Ord x /\ y e. x ) -> Ord y ) |
|
| 33 | 30 31 32 | syl2anc | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord y ) |
| 34 | smofvon2 | |- ( Smo F -> ( F ` x ) e. On ) |
|
| 35 | 34 | 3ad2ant2 | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` x ) e. On ) |
| 36 | eloni | |- ( ( F ` x ) e. On -> Ord ( F ` x ) ) |
|
| 37 | 35 36 | syl | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> Ord ( F ` x ) ) |
| 38 | simp33 | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y C_ ( F ` y ) ) |
|
| 39 | smoel2 | |- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x ) ) -> ( F ` y ) e. ( F ` x ) ) |
|
| 40 | 39 | 3adantr3 | |- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` y ) e. ( F ` x ) ) |
| 41 | 40 | 3impa | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> ( F ` y ) e. ( F ` x ) ) |
| 42 | ordtr2 | |- ( ( Ord y /\ Ord ( F ` x ) ) -> ( ( y C_ ( F ` y ) /\ ( F ` y ) e. ( F ` x ) ) -> y e. ( F ` x ) ) ) |
|
| 43 | 42 | imp | |- ( ( ( Ord y /\ Ord ( F ` x ) ) /\ ( y C_ ( F ` y ) /\ ( F ` y ) e. ( F ` x ) ) ) -> y e. ( F ` x ) ) |
| 44 | 33 37 38 41 43 | syl22anc | |- ( ( F Fn A /\ Smo F /\ ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) ) -> y e. ( F ` x ) ) |
| 45 | 44 | 3expia | |- ( ( F Fn A /\ Smo F ) -> ( ( x e. A /\ y e. x /\ y C_ ( F ` y ) ) -> y e. ( F ` x ) ) ) |
| 46 | 45 | 3expd | |- ( ( F Fn A /\ Smo F ) -> ( x e. A -> ( y e. x -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) ) ) |
| 47 | 46 | 3impia | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> ( y e. x -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) ) |
| 48 | 47 | imp | |- ( ( ( F Fn A /\ Smo F /\ x e. A ) /\ y e. x ) -> ( y C_ ( F ` y ) -> y e. ( F ` x ) ) ) |
| 49 | 48 | ralimdva | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x y C_ ( F ` y ) -> A. y e. x y e. ( F ` x ) ) ) |
| 50 | dfss3 | |- ( x C_ ( F ` x ) <-> A. y e. x y e. ( F ` x ) ) |
|
| 51 | 49 50 | imbitrrdi | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> ( A. y e. x y C_ ( F ` y ) -> x C_ ( F ` x ) ) ) |
| 52 | 27 51 | syldc | |- ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) |
| 53 | 52 | a1i | |- ( x e. On -> ( A. y e. x ( ( F Fn A /\ Smo F /\ y e. A ) -> y C_ ( F ` y ) ) -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) ) |
| 54 | 18 53 | tfis2 | |- ( x e. On -> ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) ) |
| 55 | 12 54 | mpcom | |- ( ( F Fn A /\ Smo F /\ x e. A ) -> x C_ ( F ` x ) ) |
| 56 | 55 | 3expia | |- ( ( F Fn A /\ Smo F ) -> ( x e. A -> x C_ ( F ` x ) ) ) |
| 57 | 56 | com12 | |- ( x e. A -> ( ( F Fn A /\ Smo F ) -> x C_ ( F ` x ) ) ) |
| 58 | 4 57 | vtoclga | |- ( C e. A -> ( ( F Fn A /\ Smo F ) -> C C_ ( F ` C ) ) ) |
| 59 | 58 | com12 | |- ( ( F Fn A /\ Smo F ) -> ( C e. A -> C C_ ( F ` C ) ) ) |
| 60 | 59 | 3impia | |- ( ( F Fn A /\ Smo F /\ C e. A ) -> C C_ ( F ` C ) ) |