This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The order type of an ordinal under the e. order is itself, and the order isomorphism is the identity function. (Contributed by Mario Carneiro, 26-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | oiid | |- ( Ord A -> OrdIso ( _E , A ) = ( _I |` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ordwe | |- ( Ord A -> _E We A ) |
|
| 2 | epse | |- _E Se A |
|
| 3 | 2 | a1i | |- ( Ord A -> _E Se A ) |
| 4 | eqid | |- OrdIso ( _E , A ) = OrdIso ( _E , A ) |
|
| 5 | 4 | oiiso2 | |- ( ( _E We A /\ _E Se A ) -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) ) |
| 6 | 1 2 5 | sylancl | |- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) ) |
| 7 | ordsson | |- ( Ord A -> A C_ On ) |
|
| 8 | 4 | oismo | |- ( A C_ On -> ( Smo OrdIso ( _E , A ) /\ ran OrdIso ( _E , A ) = A ) ) |
| 9 | 7 8 | syl | |- ( Ord A -> ( Smo OrdIso ( _E , A ) /\ ran OrdIso ( _E , A ) = A ) ) |
| 10 | isoeq5 | |- ( ran OrdIso ( _E , A ) = A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) <-> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) ) |
|
| 11 | 9 10 | simpl2im | |- ( Ord A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , ran OrdIso ( _E , A ) ) <-> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) ) |
| 12 | 6 11 | mpbid | |- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) ) |
| 13 | 4 | oicl | |- Ord dom OrdIso ( _E , A ) |
| 14 | 13 | a1i | |- ( Ord A -> Ord dom OrdIso ( _E , A ) ) |
| 15 | id | |- ( Ord A -> Ord A ) |
|
| 16 | ordiso2 | |- ( ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) /\ Ord dom OrdIso ( _E , A ) /\ Ord A ) -> dom OrdIso ( _E , A ) = A ) |
|
| 17 | 12 14 15 16 | syl3anc | |- ( Ord A -> dom OrdIso ( _E , A ) = A ) |
| 18 | isoeq4 | |- ( dom OrdIso ( _E , A ) = A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) <-> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) ) |
|
| 19 | 17 18 | syl | |- ( Ord A -> ( OrdIso ( _E , A ) Isom _E , _E ( dom OrdIso ( _E , A ) , A ) <-> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) ) |
| 20 | 12 19 | mpbid | |- ( Ord A -> OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) |
| 21 | weniso | |- ( ( _E We A /\ _E Se A /\ OrdIso ( _E , A ) Isom _E , _E ( A , A ) ) -> OrdIso ( _E , A ) = ( _I |` A ) ) |
|
| 22 | 1 3 20 21 | syl3anc | |- ( Ord A -> OrdIso ( _E , A ) = ( _I |` A ) ) |