This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: For any set-like well-ordered class, if the order isomorphism exists (is a set), then it maps some ordinal onto A isomorphically. Otherwise, F is a proper class, which implies that either ran F C_ A is a proper class or dom F = On . This weak version of ordtype does not require the Axiom of Replacement. (Contributed by Mario Carneiro, 25-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | oicl.1 | |- F = OrdIso ( R , A ) |
|
| Assertion | ordtype2 | |- ( ( R We A /\ R Se A /\ F e. _V ) -> F Isom _E , R ( dom F , A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | oicl.1 | |- F = OrdIso ( R , A ) |
|
| 2 | eqid | |- recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) = recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |
|
| 3 | eqid | |- { w e. A | A. j e. ran h j R w } = { w e. A | A. j e. ran h j R w } |
|
| 4 | eqid | |- ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) = ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) |
|
| 5 | 2 3 4 | ordtypecbv | |- recs ( ( f e. _V |-> ( iota_ s e. { y e. A | A. i e. ran f i R y } A. r e. { y e. A | A. i e. ran f i R y } -. r R s ) ) ) = recs ( ( h e. _V |-> ( iota_ v e. { w e. A | A. j e. ran h j R w } A. u e. { w e. A | A. j e. ran h j R w } -. u R v ) ) ) |
| 6 | eqid | |- { x e. On | E. t e. A A. z e. ( recs ( ( f e. _V |-> ( iota_ s e. { y e. A | A. i e. ran f i R y } A. r e. { y e. A | A. i e. ran f i R y } -. r R s ) ) ) " x ) z R t } = { x e. On | E. t e. A A. z e. ( recs ( ( f e. _V |-> ( iota_ s e. { y e. A | A. i e. ran f i R y } A. r e. { y e. A | A. i e. ran f i R y } -. r R s ) ) ) " x ) z R t } |
|
| 7 | simp1 | |- ( ( R We A /\ R Se A /\ F e. _V ) -> R We A ) |
|
| 8 | simp2 | |- ( ( R We A /\ R Se A /\ F e. _V ) -> R Se A ) |
|
| 9 | simp3 | |- ( ( R We A /\ R Se A /\ F e. _V ) -> F e. _V ) |
|
| 10 | 5 3 4 6 1 7 8 9 | ordtypelem9 | |- ( ( R We A /\ R Se A /\ F e. _V ) -> F Isom _E , R ( dom F , A ) ) |