This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The strictly monotone ordinal functions are also isomorphisms of subclasses of On equipped with the membership relation. (Contributed by Mario Carneiro, 20-Mar-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | smoiso2 | |- ( ( Ord A /\ B C_ On ) -> ( ( F : A -onto-> B /\ Smo F ) <-> F Isom _E , _E ( A , B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fof | |- ( F : A -onto-> B -> F : A --> B ) |
|
| 2 | smo11 | |- ( ( F : A --> B /\ Smo F ) -> F : A -1-1-> B ) |
|
| 3 | 1 2 | sylan | |- ( ( F : A -onto-> B /\ Smo F ) -> F : A -1-1-> B ) |
| 4 | simpl | |- ( ( F : A -onto-> B /\ Smo F ) -> F : A -onto-> B ) |
|
| 5 | df-f1o | |- ( F : A -1-1-onto-> B <-> ( F : A -1-1-> B /\ F : A -onto-> B ) ) |
|
| 6 | 3 4 5 | sylanbrc | |- ( ( F : A -onto-> B /\ Smo F ) -> F : A -1-1-onto-> B ) |
| 7 | 6 | adantl | |- ( ( ( Ord A /\ B C_ On ) /\ ( F : A -onto-> B /\ Smo F ) ) -> F : A -1-1-onto-> B ) |
| 8 | fofn | |- ( F : A -onto-> B -> F Fn A ) |
|
| 9 | smoord | |- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. A ) ) -> ( x e. y <-> ( F ` x ) e. ( F ` y ) ) ) |
|
| 10 | epel | |- ( x _E y <-> x e. y ) |
|
| 11 | fvex | |- ( F ` y ) e. _V |
|
| 12 | 11 | epeli | |- ( ( F ` x ) _E ( F ` y ) <-> ( F ` x ) e. ( F ` y ) ) |
| 13 | 9 10 12 | 3bitr4g | |- ( ( ( F Fn A /\ Smo F ) /\ ( x e. A /\ y e. A ) ) -> ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) |
| 14 | 13 | ralrimivva | |- ( ( F Fn A /\ Smo F ) -> A. x e. A A. y e. A ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) |
| 15 | 8 14 | sylan | |- ( ( F : A -onto-> B /\ Smo F ) -> A. x e. A A. y e. A ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) |
| 16 | 15 | adantl | |- ( ( ( Ord A /\ B C_ On ) /\ ( F : A -onto-> B /\ Smo F ) ) -> A. x e. A A. y e. A ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) |
| 17 | df-isom | |- ( F Isom _E , _E ( A , B ) <-> ( F : A -1-1-onto-> B /\ A. x e. A A. y e. A ( x _E y <-> ( F ` x ) _E ( F ` y ) ) ) ) |
|
| 18 | 7 16 17 | sylanbrc | |- ( ( ( Ord A /\ B C_ On ) /\ ( F : A -onto-> B /\ Smo F ) ) -> F Isom _E , _E ( A , B ) ) |
| 19 | 18 | ex | |- ( ( Ord A /\ B C_ On ) -> ( ( F : A -onto-> B /\ Smo F ) -> F Isom _E , _E ( A , B ) ) ) |
| 20 | isof1o | |- ( F Isom _E , _E ( A , B ) -> F : A -1-1-onto-> B ) |
|
| 21 | f1ofo | |- ( F : A -1-1-onto-> B -> F : A -onto-> B ) |
|
| 22 | 20 21 | syl | |- ( F Isom _E , _E ( A , B ) -> F : A -onto-> B ) |
| 23 | 22 | 3ad2ant1 | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> F : A -onto-> B ) |
| 24 | smoiso | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> Smo F ) |
|
| 25 | 23 24 | jca | |- ( ( F Isom _E , _E ( A , B ) /\ Ord A /\ B C_ On ) -> ( F : A -onto-> B /\ Smo F ) ) |
| 26 | 25 | 3expib | |- ( F Isom _E , _E ( A , B ) -> ( ( Ord A /\ B C_ On ) -> ( F : A -onto-> B /\ Smo F ) ) ) |
| 27 | 26 | com12 | |- ( ( Ord A /\ B C_ On ) -> ( F Isom _E , _E ( A , B ) -> ( F : A -onto-> B /\ Smo F ) ) ) |
| 28 | 19 27 | impbid | |- ( ( Ord A /\ B C_ On ) -> ( ( F : A -onto-> B /\ Smo F ) <-> F Isom _E , _E ( A , B ) ) ) |