This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Product of group multiples, generalized to NN0 . (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgass.b | |- B = ( Base ` G ) |
|
| mulgass.t | |- .x. = ( .g ` G ) |
||
| Assertion | mulgnn0ass | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgass.b | |- B = ( Base ` G ) |
|
| 2 | mulgass.t | |- .x. = ( .g ` G ) |
|
| 3 | mndsgrp | |- ( G e. Mnd -> G e. Smgrp ) |
|
| 4 | 3 | adantr | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> G e. Smgrp ) |
| 5 | 4 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> G e. Smgrp ) |
| 6 | simprl | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> M e. NN ) |
|
| 7 | simprr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> N e. NN ) |
|
| 8 | simpr3 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> X e. B ) |
|
| 9 | 8 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> X e. B ) |
| 10 | 1 2 | mulgnnass | |- ( ( G e. Smgrp /\ ( M e. NN /\ N e. NN /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| 11 | 5 6 7 9 10 | syl13anc | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ ( M e. NN /\ N e. NN ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| 12 | 11 | expr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 13 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 14 | 1 13 2 | mulg0 | |- ( X e. B -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 15 | 8 14 | syl | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 .x. X ) = ( 0g ` G ) ) |
| 16 | simpr1 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. NN0 ) |
|
| 17 | 16 | nn0cnd | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> M e. CC ) |
| 18 | 17 | mul01d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M x. 0 ) = 0 ) |
| 19 | 18 | oveq1d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. 0 ) .x. X ) = ( 0 .x. X ) ) |
| 20 | 15 | oveq2d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0 .x. X ) ) = ( M .x. ( 0g ` G ) ) ) |
| 21 | 1 2 13 | mulgnn0z | |- ( ( G e. Mnd /\ M e. NN0 ) -> ( M .x. ( 0g ` G ) ) = ( 0g ` G ) ) |
| 22 | 21 | 3ad2antr1 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0g ` G ) ) = ( 0g ` G ) ) |
| 23 | 20 22 | eqtrd | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M .x. ( 0 .x. X ) ) = ( 0g ` G ) ) |
| 24 | 15 19 23 | 3eqtr4d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) |
| 25 | 24 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) |
| 26 | oveq2 | |- ( N = 0 -> ( M x. N ) = ( M x. 0 ) ) |
|
| 27 | 26 | oveq1d | |- ( N = 0 -> ( ( M x. N ) .x. X ) = ( ( M x. 0 ) .x. X ) ) |
| 28 | oveq1 | |- ( N = 0 -> ( N .x. X ) = ( 0 .x. X ) ) |
|
| 29 | 28 | oveq2d | |- ( N = 0 -> ( M .x. ( N .x. X ) ) = ( M .x. ( 0 .x. X ) ) ) |
| 30 | 27 29 | eqeq12d | |- ( N = 0 -> ( ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) <-> ( ( M x. 0 ) .x. X ) = ( M .x. ( 0 .x. X ) ) ) ) |
| 31 | 25 30 | syl5ibrcom | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N = 0 -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 32 | simpr2 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. NN0 ) |
|
| 33 | elnn0 | |- ( N e. NN0 <-> ( N e. NN \/ N = 0 ) ) |
|
| 34 | 32 33 | sylib | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N e. NN \/ N = 0 ) ) |
| 35 | 34 | adantr | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( N e. NN \/ N = 0 ) ) |
| 36 | 12 31 35 | mpjaod | |- ( ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) /\ M e. NN ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |
| 37 | 36 | ex | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 38 | 32 | nn0cnd | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> N e. CC ) |
| 39 | 38 | mul02d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 x. N ) = 0 ) |
| 40 | 39 | oveq1d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( 0 x. N ) .x. X ) = ( 0 .x. X ) ) |
| 41 | 1 2 | mulgnn0cl | |- ( ( G e. Mnd /\ N e. NN0 /\ X e. B ) -> ( N .x. X ) e. B ) |
| 42 | 41 | 3adant3r1 | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( N .x. X ) e. B ) |
| 43 | 1 13 2 | mulg0 | |- ( ( N .x. X ) e. B -> ( 0 .x. ( N .x. X ) ) = ( 0g ` G ) ) |
| 44 | 42 43 | syl | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( 0 .x. ( N .x. X ) ) = ( 0g ` G ) ) |
| 45 | 15 40 44 | 3eqtr4d | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( 0 x. N ) .x. X ) = ( 0 .x. ( N .x. X ) ) ) |
| 46 | oveq1 | |- ( M = 0 -> ( M x. N ) = ( 0 x. N ) ) |
|
| 47 | 46 | oveq1d | |- ( M = 0 -> ( ( M x. N ) .x. X ) = ( ( 0 x. N ) .x. X ) ) |
| 48 | oveq1 | |- ( M = 0 -> ( M .x. ( N .x. X ) ) = ( 0 .x. ( N .x. X ) ) ) |
|
| 49 | 47 48 | eqeq12d | |- ( M = 0 -> ( ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) <-> ( ( 0 x. N ) .x. X ) = ( 0 .x. ( N .x. X ) ) ) ) |
| 50 | 45 49 | syl5ibrcom | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M = 0 -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) ) |
| 51 | elnn0 | |- ( M e. NN0 <-> ( M e. NN \/ M = 0 ) ) |
|
| 52 | 16 51 | sylib | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( M e. NN \/ M = 0 ) ) |
| 53 | 37 50 52 | mpjaod | |- ( ( G e. Mnd /\ ( M e. NN0 /\ N e. NN0 /\ X e. B ) ) -> ( ( M x. N ) .x. X ) = ( M .x. ( N .x. X ) ) ) |