This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any element to the power of its order is the identity. (Contributed by Mario Carneiro, 14-Jan-2015) (Revised by Stefan O'Rear, 5-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| Assertion | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | oveq1 | |- ( ( O ` A ) = 0 -> ( ( O ` A ) .x. A ) = ( 0 .x. A ) ) |
|
| 6 | 1 4 3 | mulg0 | |- ( A e. X -> ( 0 .x. A ) = .0. ) |
| 7 | 5 6 | sylan9eqr | |- ( ( A e. X /\ ( O ` A ) = 0 ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 8 | 7 | adantrr | |- ( ( A e. X /\ ( ( O ` A ) = 0 /\ { y e. NN | ( y .x. A ) = .0. } = (/) ) ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 9 | oveq1 | |- ( y = ( O ` A ) -> ( y .x. A ) = ( ( O ` A ) .x. A ) ) |
|
| 10 | 9 | eqeq1d | |- ( y = ( O ` A ) -> ( ( y .x. A ) = .0. <-> ( ( O ` A ) .x. A ) = .0. ) ) |
| 11 | 10 | elrab | |- ( ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } <-> ( ( O ` A ) e. NN /\ ( ( O ` A ) .x. A ) = .0. ) ) |
| 12 | 11 | simprbi | |- ( ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } -> ( ( O ` A ) .x. A ) = .0. ) |
| 13 | 12 | adantl | |- ( ( A e. X /\ ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } ) -> ( ( O ` A ) .x. A ) = .0. ) |
| 14 | eqid | |- { y e. NN | ( y .x. A ) = .0. } = { y e. NN | ( y .x. A ) = .0. } |
|
| 15 | 1 3 4 2 14 | odlem1 | |- ( A e. X -> ( ( ( O ` A ) = 0 /\ { y e. NN | ( y .x. A ) = .0. } = (/) ) \/ ( O ` A ) e. { y e. NN | ( y .x. A ) = .0. } ) ) |
| 16 | 8 13 15 | mpjaodan | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |