This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for mndodcong . (Contributed by Mario Carneiro, 23-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | odcl.1 | |- X = ( Base ` G ) |
|
| odcl.2 | |- O = ( od ` G ) |
||
| odid.3 | |- .x. = ( .g ` G ) |
||
| odid.4 | |- .0. = ( 0g ` G ) |
||
| mndodconglem.1 | |- ( ph -> G e. Mnd ) |
||
| mndodconglem.2 | |- ( ph -> A e. X ) |
||
| mndodconglem.3 | |- ( ph -> ( O ` A ) e. NN ) |
||
| mndodconglem.4 | |- ( ph -> M e. NN0 ) |
||
| mndodconglem.5 | |- ( ph -> N e. NN0 ) |
||
| mndodconglem.6 | |- ( ph -> M < ( O ` A ) ) |
||
| mndodconglem.7 | |- ( ph -> N < ( O ` A ) ) |
||
| mndodconglem.8 | |- ( ph -> ( M .x. A ) = ( N .x. A ) ) |
||
| Assertion | mndodconglem | |- ( ( ph /\ M <_ N ) -> M = N ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | odcl.1 | |- X = ( Base ` G ) |
|
| 2 | odcl.2 | |- O = ( od ` G ) |
|
| 3 | odid.3 | |- .x. = ( .g ` G ) |
|
| 4 | odid.4 | |- .0. = ( 0g ` G ) |
|
| 5 | mndodconglem.1 | |- ( ph -> G e. Mnd ) |
|
| 6 | mndodconglem.2 | |- ( ph -> A e. X ) |
|
| 7 | mndodconglem.3 | |- ( ph -> ( O ` A ) e. NN ) |
|
| 8 | mndodconglem.4 | |- ( ph -> M e. NN0 ) |
|
| 9 | mndodconglem.5 | |- ( ph -> N e. NN0 ) |
|
| 10 | mndodconglem.6 | |- ( ph -> M < ( O ` A ) ) |
|
| 11 | mndodconglem.7 | |- ( ph -> N < ( O ` A ) ) |
|
| 12 | mndodconglem.8 | |- ( ph -> ( M .x. A ) = ( N .x. A ) ) |
|
| 13 | 7 | nnred | |- ( ph -> ( O ` A ) e. RR ) |
| 14 | 13 | recnd | |- ( ph -> ( O ` A ) e. CC ) |
| 15 | 8 | nn0red | |- ( ph -> M e. RR ) |
| 16 | 15 | recnd | |- ( ph -> M e. CC ) |
| 17 | 9 | nn0red | |- ( ph -> N e. RR ) |
| 18 | 17 | recnd | |- ( ph -> N e. CC ) |
| 19 | 14 16 18 | addsubassd | |- ( ph -> ( ( ( O ` A ) + M ) - N ) = ( ( O ` A ) + ( M - N ) ) ) |
| 20 | 7 | nnzd | |- ( ph -> ( O ` A ) e. ZZ ) |
| 21 | 8 | nn0zd | |- ( ph -> M e. ZZ ) |
| 22 | 20 21 | zaddcld | |- ( ph -> ( ( O ` A ) + M ) e. ZZ ) |
| 23 | 22 | zred | |- ( ph -> ( ( O ` A ) + M ) e. RR ) |
| 24 | nn0addge1 | |- ( ( ( O ` A ) e. RR /\ M e. NN0 ) -> ( O ` A ) <_ ( ( O ` A ) + M ) ) |
|
| 25 | 13 8 24 | syl2anc | |- ( ph -> ( O ` A ) <_ ( ( O ` A ) + M ) ) |
| 26 | 17 13 23 11 25 | ltletrd | |- ( ph -> N < ( ( O ` A ) + M ) ) |
| 27 | 9 | nn0zd | |- ( ph -> N e. ZZ ) |
| 28 | znnsub | |- ( ( N e. ZZ /\ ( ( O ` A ) + M ) e. ZZ ) -> ( N < ( ( O ` A ) + M ) <-> ( ( ( O ` A ) + M ) - N ) e. NN ) ) |
|
| 29 | 27 22 28 | syl2anc | |- ( ph -> ( N < ( ( O ` A ) + M ) <-> ( ( ( O ` A ) + M ) - N ) e. NN ) ) |
| 30 | 26 29 | mpbid | |- ( ph -> ( ( ( O ` A ) + M ) - N ) e. NN ) |
| 31 | 19 30 | eqeltrrd | |- ( ph -> ( ( O ` A ) + ( M - N ) ) e. NN ) |
| 32 | 14 16 18 | addsub12d | |- ( ph -> ( ( O ` A ) + ( M - N ) ) = ( M + ( ( O ` A ) - N ) ) ) |
| 33 | 32 | oveq1d | |- ( ph -> ( ( ( O ` A ) + ( M - N ) ) .x. A ) = ( ( M + ( ( O ` A ) - N ) ) .x. A ) ) |
| 34 | 12 | oveq1d | |- ( ph -> ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 35 | znnsub | |- ( ( N e. ZZ /\ ( O ` A ) e. ZZ ) -> ( N < ( O ` A ) <-> ( ( O ` A ) - N ) e. NN ) ) |
|
| 36 | 27 20 35 | syl2anc | |- ( ph -> ( N < ( O ` A ) <-> ( ( O ` A ) - N ) e. NN ) ) |
| 37 | 11 36 | mpbid | |- ( ph -> ( ( O ` A ) - N ) e. NN ) |
| 38 | 37 | nnnn0d | |- ( ph -> ( ( O ` A ) - N ) e. NN0 ) |
| 39 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 40 | 1 3 39 | mulgnn0dir | |- ( ( G e. Mnd /\ ( M e. NN0 /\ ( ( O ` A ) - N ) e. NN0 /\ A e. X ) ) -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 41 | 5 8 38 6 40 | syl13anc | |- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( M .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 42 | 1 3 39 | mulgnn0dir | |- ( ( G e. Mnd /\ ( N e. NN0 /\ ( ( O ` A ) - N ) e. NN0 /\ A e. X ) ) -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 43 | 5 9 38 6 42 | syl13anc | |- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( N .x. A ) ( +g ` G ) ( ( ( O ` A ) - N ) .x. A ) ) ) |
| 44 | 34 41 43 | 3eqtr4d | |- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = ( ( N + ( ( O ` A ) - N ) ) .x. A ) ) |
| 45 | 18 14 | pncan3d | |- ( ph -> ( N + ( ( O ` A ) - N ) ) = ( O ` A ) ) |
| 46 | 45 | oveq1d | |- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = ( ( O ` A ) .x. A ) ) |
| 47 | 1 2 3 4 | odid | |- ( A e. X -> ( ( O ` A ) .x. A ) = .0. ) |
| 48 | 6 47 | syl | |- ( ph -> ( ( O ` A ) .x. A ) = .0. ) |
| 49 | 46 48 | eqtrd | |- ( ph -> ( ( N + ( ( O ` A ) - N ) ) .x. A ) = .0. ) |
| 50 | 44 49 | eqtrd | |- ( ph -> ( ( M + ( ( O ` A ) - N ) ) .x. A ) = .0. ) |
| 51 | 33 50 | eqtrd | |- ( ph -> ( ( ( O ` A ) + ( M - N ) ) .x. A ) = .0. ) |
| 52 | 1 2 3 4 | odlem2 | |- ( ( A e. X /\ ( ( O ` A ) + ( M - N ) ) e. NN /\ ( ( ( O ` A ) + ( M - N ) ) .x. A ) = .0. ) -> ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) ) |
| 53 | 6 31 51 52 | syl3anc | |- ( ph -> ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) ) |
| 54 | elfzle2 | |- ( ( O ` A ) e. ( 1 ... ( ( O ` A ) + ( M - N ) ) ) -> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) |
|
| 55 | 53 54 | syl | |- ( ph -> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) |
| 56 | 21 27 | zsubcld | |- ( ph -> ( M - N ) e. ZZ ) |
| 57 | 56 | zred | |- ( ph -> ( M - N ) e. RR ) |
| 58 | 13 57 | addge01d | |- ( ph -> ( 0 <_ ( M - N ) <-> ( O ` A ) <_ ( ( O ` A ) + ( M - N ) ) ) ) |
| 59 | 55 58 | mpbird | |- ( ph -> 0 <_ ( M - N ) ) |
| 60 | 15 17 | subge0d | |- ( ph -> ( 0 <_ ( M - N ) <-> N <_ M ) ) |
| 61 | 59 60 | mpbid | |- ( ph -> N <_ M ) |
| 62 | 15 17 | letri3d | |- ( ph -> ( M = N <-> ( M <_ N /\ N <_ M ) ) ) |
| 63 | 62 | biimprd | |- ( ph -> ( ( M <_ N /\ N <_ M ) -> M = N ) ) |
| 64 | 61 63 | mpan2d | |- ( ph -> ( M <_ N -> M = N ) ) |
| 65 | 64 | imp | |- ( ( ph /\ M <_ N ) -> M = N ) |