This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ococin | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) = |^| { x e. CH | A C_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helch | |- ~H e. CH |
|
| 2 | 1 | jctl | |- ( A C_ ~H -> ( ~H e. CH /\ A C_ ~H ) ) |
| 3 | sseq2 | |- ( x = ~H -> ( A C_ x <-> A C_ ~H ) ) |
|
| 4 | 3 | elrab | |- ( ~H e. { x e. CH | A C_ x } <-> ( ~H e. CH /\ A C_ ~H ) ) |
| 5 | 2 4 | sylibr | |- ( A C_ ~H -> ~H e. { x e. CH | A C_ x } ) |
| 6 | intss1 | |- ( ~H e. { x e. CH | A C_ x } -> |^| { x e. CH | A C_ x } C_ ~H ) |
|
| 7 | 5 6 | syl | |- ( A C_ ~H -> |^| { x e. CH | A C_ x } C_ ~H ) |
| 8 | ocss | |- ( |^| { x e. CH | A C_ x } C_ ~H -> ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ~H ) |
|
| 9 | 7 8 | syl | |- ( A C_ ~H -> ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ~H ) |
| 10 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 11 | 9 10 | jca | |- ( A C_ ~H -> ( ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) ) |
| 12 | ssintub | |- A C_ |^| { x e. CH | A C_ x } |
|
| 13 | occon | |- ( ( A C_ ~H /\ |^| { x e. CH | A C_ x } C_ ~H ) -> ( A C_ |^| { x e. CH | A C_ x } -> ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ( _|_ ` A ) ) ) |
|
| 14 | 7 13 | mpdan | |- ( A C_ ~H -> ( A C_ |^| { x e. CH | A C_ x } -> ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ( _|_ ` A ) ) ) |
| 15 | 12 14 | mpi | |- ( A C_ ~H -> ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ( _|_ ` A ) ) |
| 16 | occon | |- ( ( ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ~H /\ ( _|_ ` A ) C_ ~H ) -> ( ( _|_ ` |^| { x e. CH | A C_ x } ) C_ ( _|_ ` A ) -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` |^| { x e. CH | A C_ x } ) ) ) ) |
|
| 17 | 11 15 16 | sylc | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ ( _|_ ` ( _|_ ` |^| { x e. CH | A C_ x } ) ) ) |
| 18 | ssrab2 | |- { x e. CH | A C_ x } C_ CH |
|
| 19 | 3 | rspcev | |- ( ( ~H e. CH /\ A C_ ~H ) -> E. x e. CH A C_ x ) |
| 20 | 1 19 | mpan | |- ( A C_ ~H -> E. x e. CH A C_ x ) |
| 21 | rabn0 | |- ( { x e. CH | A C_ x } =/= (/) <-> E. x e. CH A C_ x ) |
|
| 22 | 20 21 | sylibr | |- ( A C_ ~H -> { x e. CH | A C_ x } =/= (/) ) |
| 23 | chintcl | |- ( ( { x e. CH | A C_ x } C_ CH /\ { x e. CH | A C_ x } =/= (/) ) -> |^| { x e. CH | A C_ x } e. CH ) |
|
| 24 | 18 22 23 | sylancr | |- ( A C_ ~H -> |^| { x e. CH | A C_ x } e. CH ) |
| 25 | ococ | |- ( |^| { x e. CH | A C_ x } e. CH -> ( _|_ ` ( _|_ ` |^| { x e. CH | A C_ x } ) ) = |^| { x e. CH | A C_ x } ) |
|
| 26 | 24 25 | syl | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` |^| { x e. CH | A C_ x } ) ) = |^| { x e. CH | A C_ x } ) |
| 27 | 17 26 | sseqtrd | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) C_ |^| { x e. CH | A C_ x } ) |
| 28 | occl | |- ( ( _|_ ` A ) C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. CH ) |
|
| 29 | 10 28 | syl | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. CH ) |
| 30 | ococss | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 31 | sseq2 | |- ( x = ( _|_ ` ( _|_ ` A ) ) -> ( A C_ x <-> A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
|
| 32 | 31 | elrab | |- ( ( _|_ ` ( _|_ ` A ) ) e. { x e. CH | A C_ x } <-> ( ( _|_ ` ( _|_ ` A ) ) e. CH /\ A C_ ( _|_ ` ( _|_ ` A ) ) ) ) |
| 33 | 29 30 32 | sylanbrc | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) e. { x e. CH | A C_ x } ) |
| 34 | intss1 | |- ( ( _|_ ` ( _|_ ` A ) ) e. { x e. CH | A C_ x } -> |^| { x e. CH | A C_ x } C_ ( _|_ ` ( _|_ ` A ) ) ) |
|
| 35 | 33 34 | syl | |- ( A C_ ~H -> |^| { x e. CH | A C_ x } C_ ( _|_ ` ( _|_ ` A ) ) ) |
| 36 | 27 35 | eqssd | |- ( A C_ ~H -> ( _|_ ` ( _|_ ` A ) ) = |^| { x e. CH | A C_ x } ) |