This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Alternate definition of supremum of a subset of the Hilbert lattice. Definition of supremum in Proposition 1 of Kalmbach p. 65. We actually define it on any collection of Hilbert space subsets, not just the Hilbert lattice CH , to allow more general theorems. (Contributed by NM, 13-Aug-2002) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hsupval2 | |- ( A C_ ~P ~H -> ( \/H ` A ) = |^| { x e. CH | U. A C_ x } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hsupval | |- ( A C_ ~P ~H -> ( \/H ` A ) = ( _|_ ` ( _|_ ` U. A ) ) ) |
|
| 2 | sspwuni | |- ( A C_ ~P ~H <-> U. A C_ ~H ) |
|
| 3 | ococin | |- ( U. A C_ ~H -> ( _|_ ` ( _|_ ` U. A ) ) = |^| { x e. CH | U. A C_ x } ) |
|
| 4 | 2 3 | sylbi | |- ( A C_ ~P ~H -> ( _|_ ` ( _|_ ` U. A ) ) = |^| { x e. CH | U. A C_ x } ) |
| 5 | 1 4 | eqtrd | |- ( A C_ ~P ~H -> ( \/H ` A ) = |^| { x e. CH | U. A C_ x } ) |