This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Hilbert lattice one (which is all of Hilbert space) belongs to the Hilbert lattice. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 6-Sep-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | helch | |- ~H e. CH |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssid | |- ~H C_ ~H |
|
| 2 | ax-hv0cl | |- 0h e. ~H |
|
| 3 | 1 2 | pm3.2i | |- ( ~H C_ ~H /\ 0h e. ~H ) |
| 4 | hvaddcl | |- ( ( x e. ~H /\ y e. ~H ) -> ( x +h y ) e. ~H ) |
|
| 5 | 4 | rgen2 | |- A. x e. ~H A. y e. ~H ( x +h y ) e. ~H |
| 6 | hvmulcl | |- ( ( x e. CC /\ y e. ~H ) -> ( x .h y ) e. ~H ) |
|
| 7 | 6 | rgen2 | |- A. x e. CC A. y e. ~H ( x .h y ) e. ~H |
| 8 | 5 7 | pm3.2i | |- ( A. x e. ~H A. y e. ~H ( x +h y ) e. ~H /\ A. x e. CC A. y e. ~H ( x .h y ) e. ~H ) |
| 9 | issh2 | |- ( ~H e. SH <-> ( ( ~H C_ ~H /\ 0h e. ~H ) /\ ( A. x e. ~H A. y e. ~H ( x +h y ) e. ~H /\ A. x e. CC A. y e. ~H ( x .h y ) e. ~H ) ) ) |
|
| 10 | 3 8 9 | mpbir2an | |- ~H e. SH |
| 11 | vex | |- x e. _V |
|
| 12 | 11 | hlimveci | |- ( f ~~>v x -> x e. ~H ) |
| 13 | 12 | adantl | |- ( ( f : NN --> ~H /\ f ~~>v x ) -> x e. ~H ) |
| 14 | 13 | gen2 | |- A. f A. x ( ( f : NN --> ~H /\ f ~~>v x ) -> x e. ~H ) |
| 15 | isch2 | |- ( ~H e. CH <-> ( ~H e. SH /\ A. f A. x ( ( f : NN --> ~H /\ f ~~>v x ) -> x e. ~H ) ) ) |
|
| 16 | 10 14 15 | mpbir2an | |- ~H e. CH |