This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Contraposition law for orthogonal complement. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | occon | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssralv | |- ( A C_ B -> ( A. y e. B ( x .ih y ) = 0 -> A. y e. A ( x .ih y ) = 0 ) ) |
|
| 2 | 1 | adantr | |- ( ( A C_ B /\ x e. ~H ) -> ( A. y e. B ( x .ih y ) = 0 -> A. y e. A ( x .ih y ) = 0 ) ) |
| 3 | 2 | ss2rabdv | |- ( A C_ B -> { x e. ~H | A. y e. B ( x .ih y ) = 0 } C_ { x e. ~H | A. y e. A ( x .ih y ) = 0 } ) |
| 4 | 3 | adantl | |- ( ( ( A C_ ~H /\ B C_ ~H ) /\ A C_ B ) -> { x e. ~H | A. y e. B ( x .ih y ) = 0 } C_ { x e. ~H | A. y e. A ( x .ih y ) = 0 } ) |
| 5 | ocval | |- ( B C_ ~H -> ( _|_ ` B ) = { x e. ~H | A. y e. B ( x .ih y ) = 0 } ) |
|
| 6 | 5 | ad2antlr | |- ( ( ( A C_ ~H /\ B C_ ~H ) /\ A C_ B ) -> ( _|_ ` B ) = { x e. ~H | A. y e. B ( x .ih y ) = 0 } ) |
| 7 | ocval | |- ( A C_ ~H -> ( _|_ ` A ) = { x e. ~H | A. y e. A ( x .ih y ) = 0 } ) |
|
| 8 | 7 | ad2antrr | |- ( ( ( A C_ ~H /\ B C_ ~H ) /\ A C_ B ) -> ( _|_ ` A ) = { x e. ~H | A. y e. A ( x .ih y ) = 0 } ) |
| 9 | 4 6 8 | 3sstr4d | |- ( ( ( A C_ ~H /\ B C_ ~H ) /\ A C_ B ) -> ( _|_ ` B ) C_ ( _|_ ` A ) ) |
| 10 | 9 | ex | |- ( ( A C_ ~H /\ B C_ ~H ) -> ( A C_ B -> ( _|_ ` B ) C_ ( _|_ ` A ) ) ) |