This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The intersection (infimum) of a nonempty subset of CH belongs to CH . Part of Theorem 3.13 of Beran p. 108. Also part of Definition 3.4-1 in MegPav2000 p. 2345 (PDF p. 8). (Contributed by NM, 14-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | chintcl | |- ( ( A C_ CH /\ A =/= (/) ) -> |^| A e. CH ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | inteq | |- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> |^| A = |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) ) |
|
| 2 | 1 | eleq1d | |- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( |^| A e. CH <-> |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH ) ) |
| 3 | sseq1 | |- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) |
|
| 4 | neeq1 | |- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( A =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) |
|
| 5 | 3 4 | anbi12d | |- ( A = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( A C_ CH /\ A =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) |
| 6 | sseq1 | |- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH C_ CH <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH ) ) |
|
| 7 | neeq1 | |- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( CH =/= (/) <-> if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) |
|
| 8 | 6 7 | anbi12d | |- ( CH = if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) -> ( ( CH C_ CH /\ CH =/= (/) ) <-> ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) ) ) |
| 9 | ssid | |- CH C_ CH |
|
| 10 | h0elch | |- 0H e. CH |
|
| 11 | 10 | ne0ii | |- CH =/= (/) |
| 12 | 9 11 | pm3.2i | |- ( CH C_ CH /\ CH =/= (/) ) |
| 13 | 5 8 12 | elimhyp | |- ( if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) C_ CH /\ if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) =/= (/) ) |
| 14 | 13 | chintcli | |- |^| if ( ( A C_ CH /\ A =/= (/) ) , A , CH ) e. CH |
| 15 | 2 14 | dedth | |- ( ( A C_ CH /\ A =/= (/) ) -> |^| A e. CH ) |