This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Complement of complement of a closed subspace of Hilbert space. Theorem 3.7(ii) of Beran p. 102. (Contributed by NM, 11-Oct-1999) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ococ | |- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 2fveq3 | |- ( A = if ( A e. CH , A , ~H ) -> ( _|_ ` ( _|_ ` A ) ) = ( _|_ ` ( _|_ ` if ( A e. CH , A , ~H ) ) ) ) |
|
| 2 | id | |- ( A = if ( A e. CH , A , ~H ) -> A = if ( A e. CH , A , ~H ) ) |
|
| 3 | 1 2 | eqeq12d | |- ( A = if ( A e. CH , A , ~H ) -> ( ( _|_ ` ( _|_ ` A ) ) = A <-> ( _|_ ` ( _|_ ` if ( A e. CH , A , ~H ) ) ) = if ( A e. CH , A , ~H ) ) ) |
| 4 | ifchhv | |- if ( A e. CH , A , ~H ) e. CH |
|
| 5 | 4 | ococi | |- ( _|_ ` ( _|_ ` if ( A e. CH , A , ~H ) ) ) = if ( A e. CH , A , ~H ) |
| 6 | 3 5 | dedth | |- ( A e. CH -> ( _|_ ` ( _|_ ` A ) ) = A ) |