This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Inclusion in complement of complement. Part of Proposition 1 of Kalmbach p. 65. (Contributed by NM, 9-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ococss | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ssel | |- ( A C_ ~H -> ( y e. A -> y e. ~H ) ) |
|
| 2 | ocorth | |- ( A C_ ~H -> ( ( y e. A /\ x e. ( _|_ ` A ) ) -> ( y .ih x ) = 0 ) ) |
|
| 3 | 2 | expd | |- ( A C_ ~H -> ( y e. A -> ( x e. ( _|_ ` A ) -> ( y .ih x ) = 0 ) ) ) |
| 4 | 3 | ralrimdv | |- ( A C_ ~H -> ( y e. A -> A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) |
| 5 | 1 4 | jcad | |- ( A C_ ~H -> ( y e. A -> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) |
| 6 | ocss | |- ( A C_ ~H -> ( _|_ ` A ) C_ ~H ) |
|
| 7 | ocel | |- ( ( _|_ ` A ) C_ ~H -> ( y e. ( _|_ ` ( _|_ ` A ) ) <-> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) |
|
| 8 | 6 7 | syl | |- ( A C_ ~H -> ( y e. ( _|_ ` ( _|_ ` A ) ) <-> ( y e. ~H /\ A. x e. ( _|_ ` A ) ( y .ih x ) = 0 ) ) ) |
| 9 | 5 8 | sylibrd | |- ( A C_ ~H -> ( y e. A -> y e. ( _|_ ` ( _|_ ` A ) ) ) ) |
| 10 | 9 | ssrdv | |- ( A C_ ~H -> A C_ ( _|_ ` ( _|_ ` A ) ) ) |