This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The double complement is the smallest closed subspace containing a subset of Hilbert space. Remark 3.12(B) of Beran p. 107. (Contributed by NM, 8-Aug-2000) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | ococin | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | helch | ⊢ ℋ ∈ Cℋ | |
| 2 | 1 | jctl | ⊢ ( 𝐴 ⊆ ℋ → ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) ) |
| 3 | sseq2 | ⊢ ( 𝑥 = ℋ → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ℋ ) ) | |
| 4 | 3 | elrab | ⊢ ( ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ↔ ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) ) |
| 5 | 2 4 | sylibr | ⊢ ( 𝐴 ⊆ ℋ → ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 6 | intss1 | ⊢ ( ℋ ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) | |
| 7 | 5 6 | syl | ⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) |
| 8 | ocss | ⊢ ( ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ) | |
| 9 | 7 8 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ) |
| 10 | ocss | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) | |
| 11 | 9 10 | jca | ⊢ ( 𝐴 ⊆ ℋ → ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) ) |
| 12 | ssintub | ⊢ 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } | |
| 13 | occon | ⊢ ( ( 𝐴 ⊆ ℋ ∧ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ℋ ) → ( 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) | |
| 14 | 7 13 | mpdan | ⊢ ( 𝐴 ⊆ ℋ → ( 𝐴 ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) ) |
| 15 | 12 14 | mpi | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) ) |
| 16 | occon | ⊢ ( ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ℋ ∧ ( ⊥ ‘ 𝐴 ) ⊆ ℋ ) → ( ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ⊆ ( ⊥ ‘ 𝐴 ) → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) ) ) | |
| 17 | 11 15 16 | sylc | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) ) |
| 18 | ssrab2 | ⊢ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Cℋ | |
| 19 | 3 | rspcev | ⊢ ( ( ℋ ∈ Cℋ ∧ 𝐴 ⊆ ℋ ) → ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) |
| 20 | 1 19 | mpan | ⊢ ( 𝐴 ⊆ ℋ → ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) |
| 21 | rabn0 | ⊢ ( { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ↔ ∃ 𝑥 ∈ Cℋ 𝐴 ⊆ 𝑥 ) | |
| 22 | 20 21 | sylibr | ⊢ ( 𝐴 ⊆ ℋ → { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) |
| 23 | chintcl | ⊢ ( ( { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ Cℋ ∧ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ≠ ∅ ) → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ ) | |
| 24 | 18 22 23 | sylancr | ⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ ) |
| 25 | ococ | ⊢ ( ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ∈ Cℋ → ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) | |
| 26 | 24 25 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 27 | 17 26 | sseqtrd | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ⊆ ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 28 | occl | ⊢ ( ( ⊥ ‘ 𝐴 ) ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) | |
| 29 | 10 28 | syl | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ) |
| 30 | ococss | ⊢ ( 𝐴 ⊆ ℋ → 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 31 | sseq2 | ⊢ ( 𝑥 = ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) → ( 𝐴 ⊆ 𝑥 ↔ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) | |
| 32 | 31 | elrab | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ↔ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ Cℋ ∧ 𝐴 ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) ) |
| 33 | 29 30 32 | sylanbrc | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |
| 34 | intss1 | ⊢ ( ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ∈ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) | |
| 35 | 33 34 | syl | ⊢ ( 𝐴 ⊆ ℋ → ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ⊆ ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) ) |
| 36 | 27 35 | eqssd | ⊢ ( 𝐴 ⊆ ℋ → ( ⊥ ‘ ( ⊥ ‘ 𝐴 ) ) = ∩ { 𝑥 ∈ Cℋ ∣ 𝐴 ⊆ 𝑥 } ) |