This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Implication of a class being a zero object. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | iszeroi | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | id | |- ( C e. Cat -> C e. Cat ) |
|
| 2 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 3 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 4 | 1 2 3 | zerooval | |- ( C e. Cat -> ( ZeroO ` C ) = ( ( InitO ` C ) i^i ( TermO ` C ) ) ) |
| 5 | 4 | eleq2d | |- ( C e. Cat -> ( O e. ( ZeroO ` C ) <-> O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) ) ) |
| 6 | elin | |- ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) |
|
| 7 | initoo | |- ( C e. Cat -> ( O e. ( InitO ` C ) -> O e. ( Base ` C ) ) ) |
|
| 8 | 7 | adantrd | |- ( C e. Cat -> ( ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) |
| 9 | 6 8 | biimtrid | |- ( C e. Cat -> ( O e. ( ( InitO ` C ) i^i ( TermO ` C ) ) -> O e. ( Base ` C ) ) ) |
| 10 | 5 9 | sylbid | |- ( C e. Cat -> ( O e. ( ZeroO ` C ) -> O e. ( Base ` C ) ) ) |
| 11 | 10 | imp | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> O e. ( Base ` C ) ) |
| 12 | simpl | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> C e. Cat ) |
|
| 13 | simpr | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> O e. ( Base ` C ) ) |
|
| 14 | 2 3 12 13 | iszeroo | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) <-> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 15 | 14 | biimpd | |- ( ( C e. Cat /\ O e. ( Base ` C ) ) -> ( O e. ( ZeroO ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 16 | 15 | impancom | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) -> ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |
| 17 | 11 16 | jcai | |- ( ( C e. Cat /\ O e. ( ZeroO ` C ) ) -> ( O e. ( Base ` C ) /\ ( O e. ( InitO ` C ) /\ O e. ( TermO ` C ) ) ) ) |