This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The category of unital rings is a category. (Contributed by AV, 14-Feb-2020) (Revised by AV, 9-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ringccat.c | |- C = ( RingCat ` U ) |
|
| Assertion | ringccat | |- ( U e. V -> C e. Cat ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ringccat.c | |- C = ( RingCat ` U ) |
|
| 2 | id | |- ( U e. V -> U e. V ) |
|
| 3 | eqidd | |- ( U e. V -> ( U i^i Ring ) = ( U i^i Ring ) ) |
|
| 4 | eqidd | |- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
|
| 5 | 1 2 3 4 | ringcval | |- ( U e. V -> C = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) ) |
| 6 | eqid | |- ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) = ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) |
|
| 7 | eqid | |- ( ExtStrCat ` U ) = ( ExtStrCat ` U ) |
|
| 8 | eqidd | |- ( U e. V -> ( Ring i^i U ) = ( Ring i^i U ) ) |
|
| 9 | incom | |- ( U i^i Ring ) = ( Ring i^i U ) |
|
| 10 | 9 | a1i | |- ( U e. V -> ( U i^i Ring ) = ( Ring i^i U ) ) |
| 11 | 10 | sqxpeqd | |- ( U e. V -> ( ( U i^i Ring ) X. ( U i^i Ring ) ) = ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) |
| 12 | 11 | reseq2d | |- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) = ( RingHom |` ( ( Ring i^i U ) X. ( Ring i^i U ) ) ) ) |
| 13 | 7 2 8 12 | rhmsubcsetc | |- ( U e. V -> ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) e. ( Subcat ` ( ExtStrCat ` U ) ) ) |
| 14 | 6 13 | subccat | |- ( U e. V -> ( ( ExtStrCat ` U ) |`cat ( RingHom |` ( ( U i^i Ring ) X. ( U i^i Ring ) ) ) ) e. Cat ) |
| 15 | 5 14 | eqeltrd | |- ( U e. V -> C e. Cat ) |