This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: There is no ring homomorphism from the zero ring into a nonzero ring. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nrhmzr | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( Z RingHom R ) = (/) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 2 | eqid | |- ( 0g ` Z ) = ( 0g ` Z ) |
|
| 3 | eqid | |- ( 1r ` Z ) = ( 1r ` Z ) |
|
| 4 | 1 2 3 | 0ring1eq0 | |- ( Z e. ( Ring \ NzRing ) -> ( 1r ` Z ) = ( 0g ` Z ) ) |
| 5 | 4 | adantr | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( 1r ` Z ) = ( 0g ` Z ) ) |
| 6 | 5 | adantr | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( 1r ` Z ) = ( 0g ` Z ) ) |
| 7 | 6 | eqcomd | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( 0g ` Z ) = ( 1r ` Z ) ) |
| 8 | 7 | fveq2d | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( f ` ( 0g ` Z ) ) = ( f ` ( 1r ` Z ) ) ) |
| 9 | eqid | |- ( 1r ` R ) = ( 1r ` R ) |
|
| 10 | 3 9 | rhm1 | |- ( f e. ( Z RingHom R ) -> ( f ` ( 1r ` Z ) ) = ( 1r ` R ) ) |
| 11 | 10 | adantl | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( f ` ( 1r ` Z ) ) = ( 1r ` R ) ) |
| 12 | 8 11 | eqtrd | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( f ` ( 0g ` Z ) ) = ( 1r ` R ) ) |
| 13 | rhmghm | |- ( f e. ( Z RingHom R ) -> f e. ( Z GrpHom R ) ) |
|
| 14 | 13 | adantl | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> f e. ( Z GrpHom R ) ) |
| 15 | eqid | |- ( 0g ` R ) = ( 0g ` R ) |
|
| 16 | 2 15 | ghmid | |- ( f e. ( Z GrpHom R ) -> ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) |
| 17 | 14 16 | syl | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) |
| 18 | 12 17 | jca | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ f e. ( Z RingHom R ) ) -> ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) |
| 19 | 18 | ralrimiva | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> A. f e. ( Z RingHom R ) ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) |
| 20 | 9 15 | nzrnz | |- ( R e. NzRing -> ( 1r ` R ) =/= ( 0g ` R ) ) |
| 21 | 20 | necomd | |- ( R e. NzRing -> ( 0g ` R ) =/= ( 1r ` R ) ) |
| 22 | 21 | adantl | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( 0g ` R ) =/= ( 1r ` R ) ) |
| 23 | 22 | adantr | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> ( 0g ` R ) =/= ( 1r ` R ) ) |
| 24 | neeq1 | |- ( ( f ` ( 0g ` Z ) ) = ( 0g ` R ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) <-> ( 0g ` R ) =/= ( 1r ` R ) ) ) |
|
| 25 | 24 | adantl | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) <-> ( 0g ` R ) =/= ( 1r ` R ) ) ) |
| 26 | 23 25 | mpbird | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) ) |
| 27 | 26 | orcd | |- ( ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) ) |
| 28 | 27 | expcom | |- ( ( f ` ( 0g ` Z ) ) = ( 0g ` R ) -> ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) ) ) |
| 29 | olc | |- ( ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) ) |
|
| 30 | 29 | a1d | |- ( ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) -> ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) ) ) |
| 31 | 28 30 | pm2.61ine | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) ) |
| 32 | neorian | |- ( ( ( f ` ( 0g ` Z ) ) =/= ( 1r ` R ) \/ ( f ` ( 0g ` Z ) ) =/= ( 0g ` R ) ) <-> -. ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) |
|
| 33 | 31 32 | sylib | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> -. ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) |
| 34 | con3 | |- ( ( f e. ( Z RingHom R ) -> ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) -> ( -. ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> -. f e. ( Z RingHom R ) ) ) |
|
| 35 | 33 34 | syl5com | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( ( f e. ( Z RingHom R ) -> ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) -> -. f e. ( Z RingHom R ) ) ) |
| 36 | 35 | alimdv | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( A. f ( f e. ( Z RingHom R ) -> ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) -> A. f -. f e. ( Z RingHom R ) ) ) |
| 37 | df-ral | |- ( A. f e. ( Z RingHom R ) ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) <-> A. f ( f e. ( Z RingHom R ) -> ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) ) ) |
|
| 38 | eq0 | |- ( ( Z RingHom R ) = (/) <-> A. f -. f e. ( Z RingHom R ) ) |
|
| 39 | 36 37 38 | 3imtr4g | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( A. f e. ( Z RingHom R ) ( ( f ` ( 0g ` Z ) ) = ( 1r ` R ) /\ ( f ` ( 0g ` Z ) ) = ( 0g ` R ) ) -> ( Z RingHom R ) = (/) ) ) |
| 40 | 19 39 | mpd | |- ( ( Z e. ( Ring \ NzRing ) /\ R e. NzRing ) -> ( Z RingHom R ) = (/) ) |