This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Isomorphism is transitive. (Contributed by AV, 5-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | cictr | |- ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ciclcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> R e. ( Base ` C ) ) |
|
| 2 | cicrcl | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> S e. ( Base ` C ) ) |
|
| 3 | 1 2 | jca | |- ( ( C e. Cat /\ R ( ~=c ` C ) S ) -> ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) ) |
| 4 | 3 | ex | |- ( C e. Cat -> ( R ( ~=c ` C ) S -> ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) ) ) |
| 5 | cicrcl | |- ( ( C e. Cat /\ S ( ~=c ` C ) T ) -> T e. ( Base ` C ) ) |
|
| 6 | 5 | ex | |- ( C e. Cat -> ( S ( ~=c ` C ) T -> T e. ( Base ` C ) ) ) |
| 7 | 4 6 | anim12d | |- ( C e. Cat -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) |
| 8 | 7 | 3impib | |- ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) |
| 9 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 10 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 11 | simpl | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> C e. Cat ) |
|
| 12 | simpll | |- ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R e. ( Base ` C ) ) |
|
| 13 | 12 | adantl | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R e. ( Base ` C ) ) |
| 14 | simplr | |- ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> S e. ( Base ` C ) ) |
|
| 15 | 14 | adantl | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> S e. ( Base ` C ) ) |
| 16 | 9 10 11 13 15 | cic | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( R ( ~=c ` C ) S <-> E. f f e. ( R ( Iso ` C ) S ) ) ) |
| 17 | simprr | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> T e. ( Base ` C ) ) |
|
| 18 | 9 10 11 15 17 | cic | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( S ( ~=c ` C ) T <-> E. g g e. ( S ( Iso ` C ) T ) ) ) |
| 19 | 16 18 | anbi12d | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) <-> ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) ) ) |
| 20 | 11 | adantl | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> C e. Cat ) |
| 21 | 13 | adantl | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> R e. ( Base ` C ) ) |
| 22 | 17 | adantl | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> T e. ( Base ` C ) ) |
| 23 | eqid | |- ( comp ` C ) = ( comp ` C ) |
|
| 24 | 15 | adantl | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> S e. ( Base ` C ) ) |
| 25 | simplr | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> f e. ( R ( Iso ` C ) S ) ) |
|
| 26 | simpll | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> g e. ( S ( Iso ` C ) T ) ) |
|
| 27 | 10 23 9 20 21 24 22 25 26 | isoco | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> ( g ( <. R , S >. ( comp ` C ) T ) f ) e. ( R ( Iso ` C ) T ) ) |
| 28 | 9 10 20 21 22 27 | brcici | |- ( ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) /\ ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) ) -> R ( ~=c ` C ) T ) |
| 29 | 28 | ex | |- ( ( g e. ( S ( Iso ` C ) T ) /\ f e. ( R ( Iso ` C ) S ) ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) |
| 30 | 29 | ex | |- ( g e. ( S ( Iso ` C ) T ) -> ( f e. ( R ( Iso ` C ) S ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) |
| 31 | 30 | exlimiv | |- ( E. g g e. ( S ( Iso ` C ) T ) -> ( f e. ( R ( Iso ` C ) S ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) |
| 32 | 31 | com12 | |- ( f e. ( R ( Iso ` C ) S ) -> ( E. g g e. ( S ( Iso ` C ) T ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) |
| 33 | 32 | exlimiv | |- ( E. f f e. ( R ( Iso ` C ) S ) -> ( E. g g e. ( S ( Iso ` C ) T ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) ) |
| 34 | 33 | imp | |- ( ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) -> ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> R ( ~=c ` C ) T ) ) |
| 35 | 34 | com12 | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( E. f f e. ( R ( Iso ` C ) S ) /\ E. g g e. ( S ( Iso ` C ) T ) ) -> R ( ~=c ` C ) T ) ) |
| 36 | 19 35 | sylbid | |- ( ( C e. Cat /\ ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) ) |
| 37 | 36 | ex | |- ( C e. Cat -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) ) ) |
| 38 | 37 | com23 | |- ( C e. Cat -> ( ( R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R ( ~=c ` C ) T ) ) ) |
| 39 | 38 | 3impib | |- ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> ( ( ( R e. ( Base ` C ) /\ S e. ( Base ` C ) ) /\ T e. ( Base ` C ) ) -> R ( ~=c ` C ) T ) ) |
| 40 | 8 39 | mpd | |- ( ( C e. Cat /\ R ( ~=c ` C ) S /\ S ( ~=c ` C ) T ) -> R ( ~=c ` C ) T ) |