This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Terminal objects are essentially unique (weak form), i.e. if A and B are terminal objects, then A and B are isomorphic. Proposition 7.6 of Adamek p. 103. (Contributed by AV, 18-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | termoeu1.c | |- ( ph -> C e. Cat ) |
|
| termoeu1.a | |- ( ph -> A e. ( TermO ` C ) ) |
||
| termoeu1.b | |- ( ph -> B e. ( TermO ` C ) ) |
||
| Assertion | termoeu1w | |- ( ph -> A ( ~=c ` C ) B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | termoeu1.c | |- ( ph -> C e. Cat ) |
|
| 2 | termoeu1.a | |- ( ph -> A e. ( TermO ` C ) ) |
|
| 3 | termoeu1.b | |- ( ph -> B e. ( TermO ` C ) ) |
|
| 4 | 1 2 3 | termoeu1 | |- ( ph -> E! f f e. ( A ( Iso ` C ) B ) ) |
| 5 | euex | |- ( E! f f e. ( A ( Iso ` C ) B ) -> E. f f e. ( A ( Iso ` C ) B ) ) |
|
| 6 | 4 5 | syl | |- ( ph -> E. f f e. ( A ( Iso ` C ) B ) ) |
| 7 | eqid | |- ( Iso ` C ) = ( Iso ` C ) |
|
| 8 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 9 | termoo | |- ( C e. Cat -> ( A e. ( TermO ` C ) -> A e. ( Base ` C ) ) ) |
|
| 10 | 1 2 9 | sylc | |- ( ph -> A e. ( Base ` C ) ) |
| 11 | termoo | |- ( C e. Cat -> ( B e. ( TermO ` C ) -> B e. ( Base ` C ) ) ) |
|
| 12 | 1 3 11 | sylc | |- ( ph -> B e. ( Base ` C ) ) |
| 13 | 7 8 1 10 12 | cic | |- ( ph -> ( A ( ~=c ` C ) B <-> E. f f e. ( A ( Iso ` C ) B ) ) ) |
| 14 | 6 13 | mpbird | |- ( ph -> A ( ~=c ` C ) B ) |