This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The zero ring is a terminal object in the category of unital rings. (Contributed by AV, 17-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | zrtermoringc.u | |- ( ph -> U e. V ) |
|
| zrtermoringc.c | |- C = ( RingCat ` U ) |
||
| zrtermoringc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
||
| zrtermoringc.e | |- ( ph -> Z e. U ) |
||
| Assertion | zrtermoringc | |- ( ph -> Z e. ( TermO ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zrtermoringc.u | |- ( ph -> U e. V ) |
|
| 2 | zrtermoringc.c | |- C = ( RingCat ` U ) |
|
| 3 | zrtermoringc.z | |- ( ph -> Z e. ( Ring \ NzRing ) ) |
|
| 4 | zrtermoringc.e | |- ( ph -> Z e. U ) |
|
| 5 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 6 | 2 5 1 | ringcbas | |- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
| 7 | 6 | eleq2d | |- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Ring ) ) ) |
| 8 | elin | |- ( r e. ( U i^i Ring ) <-> ( r e. U /\ r e. Ring ) ) |
|
| 9 | 8 | simprbi | |- ( r e. ( U i^i Ring ) -> r e. Ring ) |
| 10 | 7 9 | biimtrdi | |- ( ph -> ( r e. ( Base ` C ) -> r e. Ring ) ) |
| 11 | 10 | imp | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Ring ) |
| 12 | 3 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Ring \ NzRing ) ) |
| 13 | eqid | |- ( Base ` r ) = ( Base ` r ) |
|
| 14 | eqid | |- ( 0g ` Z ) = ( 0g ` Z ) |
|
| 15 | eqid | |- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) |
|
| 16 | 13 14 15 | c0rhm | |- ( ( r e. Ring /\ Z e. ( Ring \ NzRing ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
| 17 | 11 12 16 | syl2anc | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
| 18 | simpr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) |
|
| 19 | 1 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> U e. V ) |
| 20 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 21 | simpr | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
|
| 22 | 3 | eldifad | |- ( ph -> Z e. Ring ) |
| 23 | 4 22 | elind | |- ( ph -> Z e. ( U i^i Ring ) ) |
| 24 | 23 6 | eleqtrrd | |- ( ph -> Z e. ( Base ` C ) ) |
| 25 | 24 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> Z e. ( Base ` C ) ) |
| 26 | 2 5 19 20 21 25 | ringchom | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( r ( Hom ` C ) Z ) = ( r RingHom Z ) ) |
| 27 | 26 | eqcomd | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( r RingHom Z ) = ( r ( Hom ` C ) Z ) ) |
| 28 | 27 | eleq2d | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
| 29 | 28 | biimpa | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) |
| 30 | 26 | eleq2d | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> h e. ( r RingHom Z ) ) ) |
| 31 | eqid | |- ( Base ` Z ) = ( Base ` Z ) |
|
| 32 | 13 31 | rhmf | |- ( h e. ( r RingHom Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) |
| 33 | 30 32 | biimtrdi | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
| 34 | 33 | adantr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h : ( Base ` r ) --> ( Base ` Z ) ) ) |
| 35 | ffn | |- ( h : ( Base ` r ) --> ( Base ` Z ) -> h Fn ( Base ` r ) ) |
|
| 36 | 35 | adantl | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h Fn ( Base ` r ) ) |
| 37 | fvex | |- ( 0g ` Z ) e. _V |
|
| 38 | 37 15 | fnmpti | |- ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) |
| 39 | 38 | a1i | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) Fn ( Base ` r ) ) |
| 40 | 31 14 | 0ringbas | |- ( Z e. ( Ring \ NzRing ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 41 | 3 40 | syl | |- ( ph -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 42 | 41 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( Base ` Z ) = { ( 0g ` Z ) } ) |
| 43 | 42 | feq3d | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) <-> h : ( Base ` r ) --> { ( 0g ` Z ) } ) ) |
| 44 | fvconst | |- ( ( h : ( Base ` r ) --> { ( 0g ` Z ) } /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
|
| 45 | 44 | ex | |- ( h : ( Base ` r ) --> { ( 0g ` Z ) } -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) |
| 46 | 43 45 | biimtrdi | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
| 47 | 46 | adantr | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> ( a e. ( Base ` r ) -> ( h ` a ) = ( 0g ` Z ) ) ) ) |
| 48 | 47 | imp31 | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( 0g ` Z ) ) |
| 49 | eqidd | |- ( a e. ( Base ` r ) -> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
|
| 50 | eqidd | |- ( ( a e. ( Base ` r ) /\ x = a ) -> ( 0g ` Z ) = ( 0g ` Z ) ) |
|
| 51 | id | |- ( a e. ( Base ` r ) -> a e. ( Base ` r ) ) |
|
| 52 | 37 | a1i | |- ( a e. ( Base ` r ) -> ( 0g ` Z ) e. _V ) |
| 53 | 49 50 51 52 | fvmptd | |- ( a e. ( Base ` r ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
| 54 | 53 | adantl | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) = ( 0g ` Z ) ) |
| 55 | 48 54 | eqtr4d | |- ( ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) /\ a e. ( Base ` r ) ) -> ( h ` a ) = ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ` a ) ) |
| 56 | 36 39 55 | eqfnfvd | |- ( ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) /\ h : ( Base ` r ) --> ( Base ` Z ) ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) |
| 57 | 56 | ex | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h : ( Base ` r ) --> ( Base ` Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 58 | 34 57 | syld | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 59 | 58 | alrimiv | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) |
| 60 | 18 29 59 | 3jca | |- ( ( ( ph /\ r e. ( Base ` C ) ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
| 61 | 17 60 | mpdan | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) ) |
| 62 | eleq1 | |- ( h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) -> ( h e. ( r ( Hom ` C ) Z ) <-> ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) ) ) |
|
| 63 | 62 | eqeu | |- ( ( ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r RingHom Z ) /\ ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) e. ( r ( Hom ` C ) Z ) /\ A. h ( h e. ( r ( Hom ` C ) Z ) -> h = ( x e. ( Base ` r ) |-> ( 0g ` Z ) ) ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
| 64 | 61 63 | syl | |- ( ( ph /\ r e. ( Base ` C ) ) -> E! h h e. ( r ( Hom ` C ) Z ) ) |
| 65 | 64 | ralrimiva | |- ( ph -> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) |
| 66 | 2 | ringccat | |- ( U e. V -> C e. Cat ) |
| 67 | 1 66 | syl | |- ( ph -> C e. Cat ) |
| 68 | 5 20 67 24 | istermo | |- ( ph -> ( Z e. ( TermO ` C ) <-> A. r e. ( Base ` C ) E! h h e. ( r ( Hom ` C ) Z ) ) ) |
| 69 | 65 68 | mpbird | |- ( ph -> Z e. ( TermO ` C ) ) |