This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of integers is an initial object in the category of unital rings (within a universe containing the ring of integers). Example 7.2 (6) of Adamek p. 101 , and example in Lang p. 58. (Contributed by AV, 3-Apr-2020)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | irinitoringc.u | |- ( ph -> U e. V ) |
|
| irinitoringc.z | |- ( ph -> ZZring e. U ) |
||
| irinitoringc.c | |- C = ( RingCat ` U ) |
||
| Assertion | irinitoringc | |- ( ph -> ZZring e. ( InitO ` C ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | irinitoringc.u | |- ( ph -> U e. V ) |
|
| 2 | irinitoringc.z | |- ( ph -> ZZring e. U ) |
|
| 3 | irinitoringc.c | |- C = ( RingCat ` U ) |
|
| 4 | zex | |- ZZ e. _V |
|
| 5 | 4 | mptex | |- ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) e. _V |
| 6 | eqid | |- ( Base ` C ) = ( Base ` C ) |
|
| 7 | eqid | |- ( Hom ` C ) = ( Hom ` C ) |
|
| 8 | 3 6 1 7 | ringchomfval | |- ( ph -> ( Hom ` C ) = ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 9 | 8 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( Hom ` C ) = ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) ) |
| 10 | 9 | oveqd | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( Hom ` C ) r ) = ( ZZring ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) r ) ) |
| 11 | id | |- ( ZZring e. U -> ZZring e. U ) |
|
| 12 | zringring | |- ZZring e. Ring |
|
| 13 | 12 | a1i | |- ( ZZring e. U -> ZZring e. Ring ) |
| 14 | 11 13 | elind | |- ( ZZring e. U -> ZZring e. ( U i^i Ring ) ) |
| 15 | 2 14 | syl | |- ( ph -> ZZring e. ( U i^i Ring ) ) |
| 16 | 3 6 1 | ringcbas | |- ( ph -> ( Base ` C ) = ( U i^i Ring ) ) |
| 17 | 15 16 | eleqtrrd | |- ( ph -> ZZring e. ( Base ` C ) ) |
| 18 | 17 | adantr | |- ( ( ph /\ r e. ( Base ` C ) ) -> ZZring e. ( Base ` C ) ) |
| 19 | simpr | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. ( Base ` C ) ) |
|
| 20 | 18 19 | ovresd | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( RingHom |` ( ( Base ` C ) X. ( Base ` C ) ) ) r ) = ( ZZring RingHom r ) ) |
| 21 | 16 | eleq2d | |- ( ph -> ( r e. ( Base ` C ) <-> r e. ( U i^i Ring ) ) ) |
| 22 | elin | |- ( r e. ( U i^i Ring ) <-> ( r e. U /\ r e. Ring ) ) |
|
| 23 | 22 | simprbi | |- ( r e. ( U i^i Ring ) -> r e. Ring ) |
| 24 | 21 23 | biimtrdi | |- ( ph -> ( r e. ( Base ` C ) -> r e. Ring ) ) |
| 25 | 24 | imp | |- ( ( ph /\ r e. ( Base ` C ) ) -> r e. Ring ) |
| 26 | eqid | |- ( .g ` r ) = ( .g ` r ) |
|
| 27 | eqid | |- ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) |
|
| 28 | eqid | |- ( 1r ` r ) = ( 1r ` r ) |
|
| 29 | 26 27 28 | mulgrhm2 | |- ( r e. Ring -> ( ZZring RingHom r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) |
| 30 | 25 29 | syl | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring RingHom r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) |
| 31 | 10 20 30 | 3eqtrd | |- ( ( ph /\ r e. ( Base ` C ) ) -> ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) |
| 32 | sneq | |- ( f = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) -> { f } = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) |
|
| 33 | 32 | eqeq2d | |- ( f = ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) -> ( ( ZZring ( Hom ` C ) r ) = { f } <-> ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } ) ) |
| 34 | 33 | spcegv | |- ( ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) e. _V -> ( ( ZZring ( Hom ` C ) r ) = { ( z e. ZZ |-> ( z ( .g ` r ) ( 1r ` r ) ) ) } -> E. f ( ZZring ( Hom ` C ) r ) = { f } ) ) |
| 35 | 5 31 34 | mpsyl | |- ( ( ph /\ r e. ( Base ` C ) ) -> E. f ( ZZring ( Hom ` C ) r ) = { f } ) |
| 36 | eusn | |- ( E! f f e. ( ZZring ( Hom ` C ) r ) <-> E. f ( ZZring ( Hom ` C ) r ) = { f } ) |
|
| 37 | 35 36 | sylibr | |- ( ( ph /\ r e. ( Base ` C ) ) -> E! f f e. ( ZZring ( Hom ` C ) r ) ) |
| 38 | 37 | ralrimiva | |- ( ph -> A. r e. ( Base ` C ) E! f f e. ( ZZring ( Hom ` C ) r ) ) |
| 39 | 3 | ringccat | |- ( U e. V -> C e. Cat ) |
| 40 | 1 39 | syl | |- ( ph -> C e. Cat ) |
| 41 | 12 | a1i | |- ( ph -> ZZring e. Ring ) |
| 42 | 2 41 | elind | |- ( ph -> ZZring e. ( U i^i Ring ) ) |
| 43 | 42 16 | eleqtrrd | |- ( ph -> ZZring e. ( Base ` C ) ) |
| 44 | 6 7 40 43 | isinito | |- ( ph -> ( ZZring e. ( InitO ` C ) <-> A. r e. ( Base ` C ) E! f f e. ( ZZring ( Hom ` C ) r ) ) ) |
| 45 | 38 44 | mpbird | |- ( ph -> ZZring e. ( InitO ` C ) ) |