This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An isomorphism is a homomorphism. (Contributed by Mario Carneiro, 27-Jan-2017)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | isohom.b | |- B = ( Base ` C ) |
|
| isohom.h | |- H = ( Hom ` C ) |
||
| isohom.i | |- I = ( Iso ` C ) |
||
| isohom.c | |- ( ph -> C e. Cat ) |
||
| isohom.x | |- ( ph -> X e. B ) |
||
| isohom.y | |- ( ph -> Y e. B ) |
||
| Assertion | isohom | |- ( ph -> ( X I Y ) C_ ( X H Y ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | isohom.b | |- B = ( Base ` C ) |
|
| 2 | isohom.h | |- H = ( Hom ` C ) |
|
| 3 | isohom.i | |- I = ( Iso ` C ) |
|
| 4 | isohom.c | |- ( ph -> C e. Cat ) |
|
| 5 | isohom.x | |- ( ph -> X e. B ) |
|
| 6 | isohom.y | |- ( ph -> Y e. B ) |
|
| 7 | eqid | |- ( Inv ` C ) = ( Inv ` C ) |
|
| 8 | 1 7 4 5 6 3 | isoval | |- ( ph -> ( X I Y ) = dom ( X ( Inv ` C ) Y ) ) |
| 9 | 1 7 4 5 6 2 | invss | |- ( ph -> ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) ) |
| 10 | dmss | |- ( ( X ( Inv ` C ) Y ) C_ ( ( X H Y ) X. ( Y H X ) ) -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
|
| 11 | 9 10 | syl | |- ( ph -> dom ( X ( Inv ` C ) Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
| 12 | 8 11 | eqsstrd | |- ( ph -> ( X I Y ) C_ dom ( ( X H Y ) X. ( Y H X ) ) ) |
| 13 | dmxpss | |- dom ( ( X H Y ) X. ( Y H X ) ) C_ ( X H Y ) |
|
| 14 | 12 13 | sstrdi | |- ( ph -> ( X I Y ) C_ ( X H Y ) ) |