This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero times a vector is the zero vector. (Contributed by NM, 27-Nov-2007) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nv0.1 | |- X = ( BaseSet ` U ) |
|
| nv0.4 | |- S = ( .sOLD ` U ) |
||
| nv0.6 | |- Z = ( 0vec ` U ) |
||
| Assertion | nv0 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nv0.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nv0.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nv0.6 | |- Z = ( 0vec ` U ) |
|
| 4 | eqid | |- ( 1st ` U ) = ( 1st ` U ) |
|
| 5 | 4 | nvvc | |- ( U e. NrmCVec -> ( 1st ` U ) e. CVecOLD ) |
| 6 | eqid | |- ( +v ` U ) = ( +v ` U ) |
|
| 7 | 6 | vafval | |- ( +v ` U ) = ( 1st ` ( 1st ` U ) ) |
| 8 | 2 | smfval | |- S = ( 2nd ` ( 1st ` U ) ) |
| 9 | 1 6 | bafval | |- X = ran ( +v ` U ) |
| 10 | eqid | |- ( GId ` ( +v ` U ) ) = ( GId ` ( +v ` U ) ) |
|
| 11 | 7 8 9 10 | vc0 | |- ( ( ( 1st ` U ) e. CVecOLD /\ A e. X ) -> ( 0 S A ) = ( GId ` ( +v ` U ) ) ) |
| 12 | 5 11 | sylan | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = ( GId ` ( +v ` U ) ) ) |
| 13 | 6 3 | 0vfval | |- ( U e. NrmCVec -> Z = ( GId ` ( +v ` U ) ) ) |
| 14 | 13 | adantr | |- ( ( U e. NrmCVec /\ A e. X ) -> Z = ( GId ` ( +v ` U ) ) ) |
| 15 | 12 14 | eqtr4d | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 0 S A ) = Z ) |