This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Infer that a multiplicand is nonnegative from a positive multiplier and nonnegative product. (Contributed by NM, 2-Jul-2005) (Revised by Mario Carneiro, 27-May-2016) (Revised by AV, 9-Jul-2022)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | prodge0rd.1 | |- ( ph -> A e. RR+ ) |
|
| prodge0rd.2 | |- ( ph -> B e. RR ) |
||
| prodge0rd.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
||
| Assertion | prodge0rd | |- ( ph -> 0 <_ B ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | prodge0rd.1 | |- ( ph -> A e. RR+ ) |
|
| 2 | prodge0rd.2 | |- ( ph -> B e. RR ) |
|
| 3 | prodge0rd.3 | |- ( ph -> 0 <_ ( A x. B ) ) |
|
| 4 | 0red | |- ( ph -> 0 e. RR ) |
|
| 5 | 1 | rpred | |- ( ph -> A e. RR ) |
| 6 | 5 2 | remulcld | |- ( ph -> ( A x. B ) e. RR ) |
| 7 | 4 6 3 | lensymd | |- ( ph -> -. ( A x. B ) < 0 ) |
| 8 | 5 | adantr | |- ( ( ph /\ 0 < -u B ) -> A e. RR ) |
| 9 | 2 | renegcld | |- ( ph -> -u B e. RR ) |
| 10 | 9 | adantr | |- ( ( ph /\ 0 < -u B ) -> -u B e. RR ) |
| 11 | 1 | rpgt0d | |- ( ph -> 0 < A ) |
| 12 | 11 | adantr | |- ( ( ph /\ 0 < -u B ) -> 0 < A ) |
| 13 | simpr | |- ( ( ph /\ 0 < -u B ) -> 0 < -u B ) |
|
| 14 | 8 10 12 13 | mulgt0d | |- ( ( ph /\ 0 < -u B ) -> 0 < ( A x. -u B ) ) |
| 15 | 5 | recnd | |- ( ph -> A e. CC ) |
| 16 | 15 | adantr | |- ( ( ph /\ 0 < -u B ) -> A e. CC ) |
| 17 | 2 | recnd | |- ( ph -> B e. CC ) |
| 18 | 17 | adantr | |- ( ( ph /\ 0 < -u B ) -> B e. CC ) |
| 19 | 16 18 | mulneg2d | |- ( ( ph /\ 0 < -u B ) -> ( A x. -u B ) = -u ( A x. B ) ) |
| 20 | 14 19 | breqtrd | |- ( ( ph /\ 0 < -u B ) -> 0 < -u ( A x. B ) ) |
| 21 | 20 | ex | |- ( ph -> ( 0 < -u B -> 0 < -u ( A x. B ) ) ) |
| 22 | 2 | lt0neg1d | |- ( ph -> ( B < 0 <-> 0 < -u B ) ) |
| 23 | 6 | lt0neg1d | |- ( ph -> ( ( A x. B ) < 0 <-> 0 < -u ( A x. B ) ) ) |
| 24 | 21 22 23 | 3imtr4d | |- ( ph -> ( B < 0 -> ( A x. B ) < 0 ) ) |
| 25 | 7 24 | mtod | |- ( ph -> -. B < 0 ) |
| 26 | 4 2 25 | nltled | |- ( ph -> 0 <_ B ) |