This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Triangle inequality for the norm of a normed complex vector space. (Contributed by NM, 11-Nov-2006) (Revised by Mario Carneiro, 21-Dec-2013) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvtri.1 | |- X = ( BaseSet ` U ) |
|
| nvtri.2 | |- G = ( +v ` U ) |
||
| nvtri.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvtri | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvtri.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvtri.2 | |- G = ( +v ` U ) |
|
| 3 | nvtri.6 | |- N = ( normCV ` U ) |
|
| 4 | eqid | |- ( .sOLD ` U ) = ( .sOLD ` U ) |
|
| 5 | 4 | smfval | |- ( .sOLD ` U ) = ( 2nd ` ( 1st ` U ) ) |
| 6 | 5 | eqcomi | |- ( 2nd ` ( 1st ` U ) ) = ( .sOLD ` U ) |
| 7 | eqid | |- ( 0vec ` U ) = ( 0vec ` U ) |
|
| 8 | 1 2 6 7 3 | nvi | |- ( U e. NrmCVec -> ( <. G , ( 2nd ` ( 1st ` U ) ) >. e. CVecOLD /\ N : X --> RR /\ A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y ( 2nd ` ( 1st ` U ) ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) ) |
| 9 | 8 | simp3d | |- ( U e. NrmCVec -> A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y ( 2nd ` ( 1st ` U ) ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) ) |
| 10 | simp3 | |- ( ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y ( 2nd ` ( 1st ` U ) ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
|
| 11 | 10 | ralimi | |- ( A. x e. X ( ( ( N ` x ) = 0 -> x = ( 0vec ` U ) ) /\ A. y e. CC ( N ` ( y ( 2nd ` ( 1st ` U ) ) x ) ) = ( ( abs ` y ) x. ( N ` x ) ) /\ A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) -> A. x e. X A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 12 | 9 11 | syl | |- ( U e. NrmCVec -> A. x e. X A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) ) |
| 13 | fvoveq1 | |- ( x = A -> ( N ` ( x G y ) ) = ( N ` ( A G y ) ) ) |
|
| 14 | fveq2 | |- ( x = A -> ( N ` x ) = ( N ` A ) ) |
|
| 15 | 14 | oveq1d | |- ( x = A -> ( ( N ` x ) + ( N ` y ) ) = ( ( N ` A ) + ( N ` y ) ) ) |
| 16 | 13 15 | breq12d | |- ( x = A -> ( ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) <-> ( N ` ( A G y ) ) <_ ( ( N ` A ) + ( N ` y ) ) ) ) |
| 17 | oveq2 | |- ( y = B -> ( A G y ) = ( A G B ) ) |
|
| 18 | 17 | fveq2d | |- ( y = B -> ( N ` ( A G y ) ) = ( N ` ( A G B ) ) ) |
| 19 | fveq2 | |- ( y = B -> ( N ` y ) = ( N ` B ) ) |
|
| 20 | 19 | oveq2d | |- ( y = B -> ( ( N ` A ) + ( N ` y ) ) = ( ( N ` A ) + ( N ` B ) ) ) |
| 21 | 18 20 | breq12d | |- ( y = B -> ( ( N ` ( A G y ) ) <_ ( ( N ` A ) + ( N ` y ) ) <-> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) ) |
| 22 | 16 21 | rspc2v | |- ( ( A e. X /\ B e. X ) -> ( A. x e. X A. y e. X ( N ` ( x G y ) ) <_ ( ( N ` x ) + ( N ` y ) ) -> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) ) |
| 23 | 12 22 | syl5 | |- ( ( A e. X /\ B e. X ) -> ( U e. NrmCVec -> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) ) |
| 24 | 23 | 3impia | |- ( ( A e. X /\ B e. X /\ U e. NrmCVec ) -> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |
| 25 | 24 | 3comr | |- ( ( U e. NrmCVec /\ A e. X /\ B e. X ) -> ( N ` ( A G B ) ) <_ ( ( N ` A ) + ( N ` B ) ) ) |