This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The norm of the negative of a vector. (Contributed by NM, 28-Nov-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nvs.1 | |- X = ( BaseSet ` U ) |
|
| nvs.4 | |- S = ( .sOLD ` U ) |
||
| nvs.6 | |- N = ( normCV ` U ) |
||
| Assertion | nvm1 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( N ` A ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nvs.1 | |- X = ( BaseSet ` U ) |
|
| 2 | nvs.4 | |- S = ( .sOLD ` U ) |
|
| 3 | nvs.6 | |- N = ( normCV ` U ) |
|
| 4 | neg1cn | |- -u 1 e. CC |
|
| 5 | 1 2 3 | nvs | |- ( ( U e. NrmCVec /\ -u 1 e. CC /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) |
| 6 | 4 5 | mp3an2 | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( ( abs ` -u 1 ) x. ( N ` A ) ) ) |
| 7 | ax-1cn | |- 1 e. CC |
|
| 8 | 7 | absnegi | |- ( abs ` -u 1 ) = ( abs ` 1 ) |
| 9 | abs1 | |- ( abs ` 1 ) = 1 |
|
| 10 | 8 9 | eqtri | |- ( abs ` -u 1 ) = 1 |
| 11 | 10 | oveq1i | |- ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( 1 x. ( N ` A ) ) |
| 12 | 1 3 | nvcl | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. RR ) |
| 13 | 12 | recnd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` A ) e. CC ) |
| 14 | 13 | mullidd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( 1 x. ( N ` A ) ) = ( N ` A ) ) |
| 15 | 11 14 | eqtrid | |- ( ( U e. NrmCVec /\ A e. X ) -> ( ( abs ` -u 1 ) x. ( N ` A ) ) = ( N ` A ) ) |
| 16 | 6 15 | eqtrd | |- ( ( U e. NrmCVec /\ A e. X ) -> ( N ` ( -u 1 S A ) ) = ( N ` A ) ) |