This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is a bound on the size of an operator, even when it is infinite (using extended real multiplication). (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | |- N = ( S normOp T ) |
|
| nmoi.2 | |- V = ( Base ` S ) |
||
| nmoi.3 | |- L = ( norm ` S ) |
||
| nmoi.4 | |- M = ( norm ` T ) |
||
| Assertion | nmoix | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | nmoi.2 | |- V = ( Base ` S ) |
|
| 3 | nmoi.3 | |- L = ( norm ` S ) |
|
| 4 | nmoi.4 | |- M = ( norm ` T ) |
|
| 5 | 1 | isnghm2 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( F e. ( S NGHom T ) <-> ( N ` F ) e. RR ) ) |
| 6 | 5 | biimpar | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( N ` F ) e. RR ) -> F e. ( S NGHom T ) ) |
| 7 | 1 2 3 4 | nmoi | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
| 8 | 6 7 | sylan | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( N ` F ) e. RR ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
| 9 | 8 | an32s | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
| 10 | id | |- ( ( N ` F ) e. RR -> ( N ` F ) e. RR ) |
|
| 11 | 2 3 | nmcl | |- ( ( S e. NrmGrp /\ X e. V ) -> ( L ` X ) e. RR ) |
| 12 | 11 | 3ad2antl1 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( L ` X ) e. RR ) |
| 13 | rexmul | |- ( ( ( N ` F ) e. RR /\ ( L ` X ) e. RR ) -> ( ( N ` F ) *e ( L ` X ) ) = ( ( N ` F ) x. ( L ` X ) ) ) |
|
| 14 | 10 12 13 | syl2anr | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( ( N ` F ) *e ( L ` X ) ) = ( ( N ` F ) x. ( L ` X ) ) ) |
| 15 | 9 14 | breqtrrd | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) e. RR ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
| 16 | fveq2 | |- ( X = ( 0g ` S ) -> ( F ` X ) = ( F ` ( 0g ` S ) ) ) |
|
| 17 | 16 | fveq2d | |- ( X = ( 0g ` S ) -> ( M ` ( F ` X ) ) = ( M ` ( F ` ( 0g ` S ) ) ) ) |
| 18 | fveq2 | |- ( X = ( 0g ` S ) -> ( L ` X ) = ( L ` ( 0g ` S ) ) ) |
|
| 19 | 18 | oveq2d | |- ( X = ( 0g ` S ) -> ( +oo *e ( L ` X ) ) = ( +oo *e ( L ` ( 0g ` S ) ) ) ) |
| 20 | 17 19 | breq12d | |- ( X = ( 0g ` S ) -> ( ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) <-> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) ) ) |
| 21 | simpl2 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> T e. NrmGrp ) |
|
| 22 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 23 | 2 22 | ghmf | |- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
| 24 | 23 | ffvelcdmda | |- ( ( F e. ( S GrpHom T ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
| 25 | 24 | 3ad2antl3 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
| 26 | 22 4 | nmcl | |- ( ( T e. NrmGrp /\ ( F ` X ) e. ( Base ` T ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 27 | 21 25 26 | syl2anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) e. RR ) |
| 28 | 27 | adantr | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 29 | 28 | rexrd | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) e. RR* ) |
| 30 | pnfge | |- ( ( M ` ( F ` X ) ) e. RR* -> ( M ` ( F ` X ) ) <_ +oo ) |
|
| 31 | 29 30 | syl | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) <_ +oo ) |
| 32 | simp1 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> S e. NrmGrp ) |
|
| 33 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 34 | 2 3 33 | nmrpcl | |- ( ( S e. NrmGrp /\ X e. V /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 35 | 34 | 3expa | |- ( ( ( S e. NrmGrp /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 36 | 32 35 | sylanl1 | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 37 | rpxr | |- ( ( L ` X ) e. RR+ -> ( L ` X ) e. RR* ) |
|
| 38 | rpgt0 | |- ( ( L ` X ) e. RR+ -> 0 < ( L ` X ) ) |
|
| 39 | xmulpnf2 | |- ( ( ( L ` X ) e. RR* /\ 0 < ( L ` X ) ) -> ( +oo *e ( L ` X ) ) = +oo ) |
|
| 40 | 37 38 39 | syl2anc | |- ( ( L ` X ) e. RR+ -> ( +oo *e ( L ` X ) ) = +oo ) |
| 41 | 36 40 | syl | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( +oo *e ( L ` X ) ) = +oo ) |
| 42 | 31 41 | breqtrrd | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
| 43 | 0le0 | |- 0 <_ 0 |
|
| 44 | simpl3 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> F e. ( S GrpHom T ) ) |
|
| 45 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 46 | 33 45 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 47 | 44 46 | syl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 48 | 47 | fveq2d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = ( M ` ( 0g ` T ) ) ) |
| 49 | 4 45 | nm0 | |- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
| 50 | 21 49 | syl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( 0g ` T ) ) = 0 ) |
| 51 | 48 50 | eqtrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = 0 ) |
| 52 | simpl1 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> S e. NrmGrp ) |
|
| 53 | 3 33 | nm0 | |- ( S e. NrmGrp -> ( L ` ( 0g ` S ) ) = 0 ) |
| 54 | 52 53 | syl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( L ` ( 0g ` S ) ) = 0 ) |
| 55 | 54 | oveq2d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( +oo *e ( L ` ( 0g ` S ) ) ) = ( +oo *e 0 ) ) |
| 56 | pnfxr | |- +oo e. RR* |
|
| 57 | xmul01 | |- ( +oo e. RR* -> ( +oo *e 0 ) = 0 ) |
|
| 58 | 56 57 | ax-mp | |- ( +oo *e 0 ) = 0 |
| 59 | 55 58 | eqtrdi | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( +oo *e ( L ` ( 0g ` S ) ) ) = 0 ) |
| 60 | 51 59 | breq12d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) <-> 0 <_ 0 ) ) |
| 61 | 43 60 | mpbiri | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( +oo *e ( L ` ( 0g ` S ) ) ) ) |
| 62 | 20 42 61 | pm2.61ne | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
| 63 | 62 | adantr | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( M ` ( F ` X ) ) <_ ( +oo *e ( L ` X ) ) ) |
| 64 | simpr | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( N ` F ) = +oo ) |
|
| 65 | 64 | oveq1d | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( ( N ` F ) *e ( L ` X ) ) = ( +oo *e ( L ` X ) ) ) |
| 66 | 63 65 | breqtrrd | |- ( ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) /\ ( N ` F ) = +oo ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
| 67 | 1 | nmocl | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
| 68 | 1 | nmoge0 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
| 69 | ge0nemnf | |- ( ( ( N ` F ) e. RR* /\ 0 <_ ( N ` F ) ) -> ( N ` F ) =/= -oo ) |
|
| 70 | 67 68 69 | syl2anc | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) =/= -oo ) |
| 71 | 67 70 | jca | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR* /\ ( N ` F ) =/= -oo ) ) |
| 72 | xrnemnf | |- ( ( ( N ` F ) e. RR* /\ ( N ` F ) =/= -oo ) <-> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
|
| 73 | 71 72 | sylib | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
| 74 | 73 | adantr | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( ( N ` F ) e. RR \/ ( N ` F ) = +oo ) ) |
| 75 | 15 66 74 | mpjaodan | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |