This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm achieves the minimum of the set of upper bounds, if the operator is bounded. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | |- N = ( S normOp T ) |
|
| nmoi.2 | |- V = ( Base ` S ) |
||
| nmoi.3 | |- L = ( norm ` S ) |
||
| nmoi.4 | |- M = ( norm ` T ) |
||
| Assertion | nmoi | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | nmoi.2 | |- V = ( Base ` S ) |
|
| 3 | nmoi.3 | |- L = ( norm ` S ) |
|
| 4 | nmoi.4 | |- M = ( norm ` T ) |
|
| 5 | 2fveq3 | |- ( X = ( 0g ` S ) -> ( M ` ( F ` X ) ) = ( M ` ( F ` ( 0g ` S ) ) ) ) |
|
| 6 | fveq2 | |- ( X = ( 0g ` S ) -> ( L ` X ) = ( L ` ( 0g ` S ) ) ) |
|
| 7 | 6 | oveq2d | |- ( X = ( 0g ` S ) -> ( ( N ` F ) x. ( L ` X ) ) = ( ( N ` F ) x. ( L ` ( 0g ` S ) ) ) ) |
| 8 | 5 7 | breq12d | |- ( X = ( 0g ` S ) -> ( ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) <-> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( ( N ` F ) x. ( L ` ( 0g ` S ) ) ) ) ) |
| 9 | 2fveq3 | |- ( x = X -> ( M ` ( F ` x ) ) = ( M ` ( F ` X ) ) ) |
|
| 10 | fveq2 | |- ( x = X -> ( L ` x ) = ( L ` X ) ) |
|
| 11 | 10 | oveq2d | |- ( x = X -> ( r x. ( L ` x ) ) = ( r x. ( L ` X ) ) ) |
| 12 | 9 11 | breq12d | |- ( x = X -> ( ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) <-> ( M ` ( F ` X ) ) <_ ( r x. ( L ` X ) ) ) ) |
| 13 | 12 | rspcv | |- ( X e. V -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( M ` ( F ` X ) ) <_ ( r x. ( L ` X ) ) ) ) |
| 14 | 13 | ad3antlr | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( M ` ( F ` X ) ) <_ ( r x. ( L ` X ) ) ) ) |
| 15 | 1 | isnghm | |- ( F e. ( S NGHom T ) <-> ( ( S e. NrmGrp /\ T e. NrmGrp ) /\ ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) ) |
| 16 | 15 | simplbi | |- ( F e. ( S NGHom T ) -> ( S e. NrmGrp /\ T e. NrmGrp ) ) |
| 17 | 16 | adantr | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( S e. NrmGrp /\ T e. NrmGrp ) ) |
| 18 | 17 | simprd | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> T e. NrmGrp ) |
| 19 | 15 | simprbi | |- ( F e. ( S NGHom T ) -> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) |
| 20 | 19 | adantr | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( F e. ( S GrpHom T ) /\ ( N ` F ) e. RR ) ) |
| 21 | 20 | simpld | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> F e. ( S GrpHom T ) ) |
| 22 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 23 | 2 22 | ghmf | |- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
| 24 | 21 23 | syl | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> F : V --> ( Base ` T ) ) |
| 25 | ffvelcdm | |- ( ( F : V --> ( Base ` T ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
|
| 26 | 24 25 | sylancom | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( F ` X ) e. ( Base ` T ) ) |
| 27 | 22 4 | nmcl | |- ( ( T e. NrmGrp /\ ( F ` X ) e. ( Base ` T ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 28 | 18 26 27 | syl2anc | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` X ) ) e. RR ) |
| 29 | 28 | adantr | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 30 | 29 | adantr | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 31 | elrege0 | |- ( r e. ( 0 [,) +oo ) <-> ( r e. RR /\ 0 <_ r ) ) |
|
| 32 | 31 | simplbi | |- ( r e. ( 0 [,) +oo ) -> r e. RR ) |
| 33 | 32 | adantl | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> r e. RR ) |
| 34 | 17 | simpld | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> S e. NrmGrp ) |
| 35 | simpr | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> X e. V ) |
|
| 36 | 34 35 | jca | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( S e. NrmGrp /\ X e. V ) ) |
| 37 | eqid | |- ( 0g ` S ) = ( 0g ` S ) |
|
| 38 | 2 3 37 | nmrpcl | |- ( ( S e. NrmGrp /\ X e. V /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 39 | 38 | 3expa | |- ( ( ( S e. NrmGrp /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 40 | 36 39 | sylan | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( L ` X ) e. RR+ ) |
| 41 | 40 | rpregt0d | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( L ` X ) e. RR /\ 0 < ( L ` X ) ) ) |
| 42 | 41 | adantr | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> ( ( L ` X ) e. RR /\ 0 < ( L ` X ) ) ) |
| 43 | ledivmul2 | |- ( ( ( M ` ( F ` X ) ) e. RR /\ r e. RR /\ ( ( L ` X ) e. RR /\ 0 < ( L ` X ) ) ) -> ( ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r <-> ( M ` ( F ` X ) ) <_ ( r x. ( L ` X ) ) ) ) |
|
| 44 | 30 33 42 43 | syl3anc | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> ( ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r <-> ( M ` ( F ` X ) ) <_ ( r x. ( L ` X ) ) ) ) |
| 45 | 14 44 | sylibrd | |- ( ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) /\ r e. ( 0 [,) +oo ) ) -> ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r ) ) |
| 46 | 45 | ralrimiva | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> A. r e. ( 0 [,) +oo ) ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r ) ) |
| 47 | 34 | adantr | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> S e. NrmGrp ) |
| 48 | 18 | adantr | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> T e. NrmGrp ) |
| 49 | 21 | adantr | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> F e. ( S GrpHom T ) ) |
| 50 | 29 40 | rerpdivcld | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) e. RR ) |
| 51 | 50 | rexrd | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) e. RR* ) |
| 52 | 1 2 3 4 | nmogelb | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( ( M ` ( F ` X ) ) / ( L ` X ) ) e. RR* ) -> ( ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) <-> A. r e. ( 0 [,) +oo ) ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r ) ) ) |
| 53 | 47 48 49 51 52 | syl31anc | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) <-> A. r e. ( 0 [,) +oo ) ( A. x e. V ( M ` ( F ` x ) ) <_ ( r x. ( L ` x ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ r ) ) ) |
| 54 | 46 53 | mpbird | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) ) |
| 55 | 20 | simprd | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( N ` F ) e. RR ) |
| 56 | 55 | adantr | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( N ` F ) e. RR ) |
| 57 | 29 56 40 | ledivmul2d | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) <-> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) ) |
| 58 | 54 57 | mpbid | |- ( ( ( F e. ( S NGHom T ) /\ X e. V ) /\ X =/= ( 0g ` S ) ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |
| 59 | eqid | |- ( 0g ` T ) = ( 0g ` T ) |
|
| 60 | 37 59 | ghmid | |- ( F e. ( S GrpHom T ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 61 | 21 60 | syl | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( F ` ( 0g ` S ) ) = ( 0g ` T ) ) |
| 62 | 61 | fveq2d | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = ( M ` ( 0g ` T ) ) ) |
| 63 | 4 59 | nm0 | |- ( T e. NrmGrp -> ( M ` ( 0g ` T ) ) = 0 ) |
| 64 | 18 63 | syl | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( 0g ` T ) ) = 0 ) |
| 65 | 62 64 | eqtrd | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) = 0 ) |
| 66 | 3 37 | nm0 | |- ( S e. NrmGrp -> ( L ` ( 0g ` S ) ) = 0 ) |
| 67 | 34 66 | syl | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( L ` ( 0g ` S ) ) = 0 ) |
| 68 | 0re | |- 0 e. RR |
|
| 69 | 67 68 | eqeltrdi | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( L ` ( 0g ` S ) ) e. RR ) |
| 70 | 1 | nmoge0 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
| 71 | 34 18 21 70 | syl3anc | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> 0 <_ ( N ` F ) ) |
| 72 | 0le0 | |- 0 <_ 0 |
|
| 73 | 72 67 | breqtrrid | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> 0 <_ ( L ` ( 0g ` S ) ) ) |
| 74 | 55 69 71 73 | mulge0d | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> 0 <_ ( ( N ` F ) x. ( L ` ( 0g ` S ) ) ) ) |
| 75 | 65 74 | eqbrtrd | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` ( 0g ` S ) ) ) <_ ( ( N ` F ) x. ( L ` ( 0g ` S ) ) ) ) |
| 76 | 8 58 75 | pm2.61ne | |- ( ( F e. ( S NGHom T ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) x. ( L ` X ) ) ) |