This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm of an operator is nonnegative. (Contributed by Mario Carneiro, 18-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmofval.1 | |- N = ( S normOp T ) |
|
| Assertion | nmoge0 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | elrege0 | |- ( r e. ( 0 [,) +oo ) <-> ( r e. RR /\ 0 <_ r ) ) |
|
| 3 | 2 | simprbi | |- ( r e. ( 0 [,) +oo ) -> 0 <_ r ) |
| 4 | 3 | adantl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ r e. ( 0 [,) +oo ) ) -> 0 <_ r ) |
| 5 | 4 | a1d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ r e. ( 0 [,) +oo ) ) -> ( A. x e. ( Base ` S ) ( ( norm ` T ) ` ( F ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) -> 0 <_ r ) ) |
| 6 | 5 | ralrimiva | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> A. r e. ( 0 [,) +oo ) ( A. x e. ( Base ` S ) ( ( norm ` T ) ` ( F ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) -> 0 <_ r ) ) |
| 7 | 0xr | |- 0 e. RR* |
|
| 8 | eqid | |- ( Base ` S ) = ( Base ` S ) |
|
| 9 | eqid | |- ( norm ` S ) = ( norm ` S ) |
|
| 10 | eqid | |- ( norm ` T ) = ( norm ` T ) |
|
| 11 | 1 8 9 10 | nmogelb | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ 0 e. RR* ) -> ( 0 <_ ( N ` F ) <-> A. r e. ( 0 [,) +oo ) ( A. x e. ( Base ` S ) ( ( norm ` T ) ` ( F ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) -> 0 <_ r ) ) ) |
| 12 | 7 11 | mpan2 | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( 0 <_ ( N ` F ) <-> A. r e. ( 0 [,) +oo ) ( A. x e. ( Base ` S ) ( ( norm ` T ) ` ( F ` x ) ) <_ ( r x. ( ( norm ` S ) ` x ) ) -> 0 <_ r ) ) ) |
| 13 | 6 12 | mpbird | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> 0 <_ ( N ` F ) ) |