This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The operator norm is a bound on the growth of a vector under the action of the operator. (Contributed by Mario Carneiro, 19-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nmofval.1 | |- N = ( S normOp T ) |
|
| nmoi.2 | |- V = ( Base ` S ) |
||
| nmoi.3 | |- L = ( norm ` S ) |
||
| nmoi.4 | |- M = ( norm ` T ) |
||
| nmoi2.z | |- .0. = ( 0g ` S ) |
||
| Assertion | nmoi2 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmofval.1 | |- N = ( S normOp T ) |
|
| 2 | nmoi.2 | |- V = ( Base ` S ) |
|
| 3 | nmoi.3 | |- L = ( norm ` S ) |
|
| 4 | nmoi.4 | |- M = ( norm ` T ) |
|
| 5 | nmoi2.z | |- .0. = ( 0g ` S ) |
|
| 6 | simpl2 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> T e. NrmGrp ) |
|
| 7 | simpl3 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> F e. ( S GrpHom T ) ) |
|
| 8 | eqid | |- ( Base ` T ) = ( Base ` T ) |
|
| 9 | 2 8 | ghmf | |- ( F e. ( S GrpHom T ) -> F : V --> ( Base ` T ) ) |
| 10 | 7 9 | syl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> F : V --> ( Base ` T ) ) |
| 11 | simprl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> X e. V ) |
|
| 12 | 10 11 | ffvelcdmd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( F ` X ) e. ( Base ` T ) ) |
| 13 | 8 4 | nmcl | |- ( ( T e. NrmGrp /\ ( F ` X ) e. ( Base ` T ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 14 | 6 12 13 | syl2anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. RR ) |
| 15 | 14 | rexrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. RR* ) |
| 16 | 1 | nmocl | |- ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) -> ( N ` F ) e. RR* ) |
| 17 | 16 | adantr | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( N ` F ) e. RR* ) |
| 18 | 2 3 5 | nmrpcl | |- ( ( S e. NrmGrp /\ X e. V /\ X =/= .0. ) -> ( L ` X ) e. RR+ ) |
| 19 | 18 | 3expb | |- ( ( S e. NrmGrp /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR+ ) |
| 20 | 19 | 3ad2antl1 | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR+ ) |
| 21 | 20 | rpxrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR* ) |
| 22 | 17 21 | xmulcld | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e ( L ` X ) ) e. RR* ) |
| 23 | 20 | rpreccld | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR+ ) |
| 24 | 23 | rpxrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR* ) |
| 25 | 23 | rpge0d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> 0 <_ ( 1 / ( L ` X ) ) ) |
| 26 | 24 25 | jca | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( 1 / ( L ` X ) ) e. RR* /\ 0 <_ ( 1 / ( L ` X ) ) ) ) |
| 27 | 1 2 3 4 | nmoix | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ X e. V ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
| 28 | 27 | adantrr | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) |
| 29 | xlemul1a | |- ( ( ( ( M ` ( F ` X ) ) e. RR* /\ ( ( N ` F ) *e ( L ` X ) ) e. RR* /\ ( ( 1 / ( L ` X ) ) e. RR* /\ 0 <_ ( 1 / ( L ` X ) ) ) ) /\ ( M ` ( F ` X ) ) <_ ( ( N ` F ) *e ( L ` X ) ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) <_ ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) ) |
|
| 30 | 15 22 26 28 29 | syl31anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) <_ ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) ) |
| 31 | 23 | rpred | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( 1 / ( L ` X ) ) e. RR ) |
| 32 | rexmul | |- ( ( ( M ` ( F ` X ) ) e. RR /\ ( 1 / ( L ` X ) ) e. RR ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
|
| 33 | 14 31 32 | syl2anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
| 34 | 14 | recnd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( M ` ( F ` X ) ) e. CC ) |
| 35 | 20 | rpcnd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. CC ) |
| 36 | 20 | rpne0d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) =/= 0 ) |
| 37 | 34 35 36 | divrecd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) = ( ( M ` ( F ` X ) ) x. ( 1 / ( L ` X ) ) ) ) |
| 38 | 33 37 | eqtr4d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( M ` ( F ` X ) ) / ( L ` X ) ) ) |
| 39 | xmulass | |- ( ( ( N ` F ) e. RR* /\ ( L ` X ) e. RR* /\ ( 1 / ( L ` X ) ) e. RR* ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) ) |
|
| 40 | 17 21 24 39 | syl3anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) ) |
| 41 | 20 | rpred | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( L ` X ) e. RR ) |
| 42 | rexmul | |- ( ( ( L ` X ) e. RR /\ ( 1 / ( L ` X ) ) e. RR ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) ) |
|
| 43 | 41 31 42 | syl2anc | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) ) |
| 44 | 35 36 | recidd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) x. ( 1 / ( L ` X ) ) ) = 1 ) |
| 45 | 43 44 | eqtrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) = 1 ) |
| 46 | 45 | oveq2d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e ( ( L ` X ) *e ( 1 / ( L ` X ) ) ) ) = ( ( N ` F ) *e 1 ) ) |
| 47 | xmulrid | |- ( ( N ` F ) e. RR* -> ( ( N ` F ) *e 1 ) = ( N ` F ) ) |
|
| 48 | 17 47 | syl | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( N ` F ) *e 1 ) = ( N ` F ) ) |
| 49 | 40 46 48 | 3eqtrd | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( ( N ` F ) *e ( L ` X ) ) *e ( 1 / ( L ` X ) ) ) = ( N ` F ) ) |
| 50 | 30 38 49 | 3brtr3d | |- ( ( ( S e. NrmGrp /\ T e. NrmGrp /\ F e. ( S GrpHom T ) ) /\ ( X e. V /\ X =/= .0. ) ) -> ( ( M ` ( F ` X ) ) / ( L ` X ) ) <_ ( N ` F ) ) |