This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear operator. (Contributed by NM, 14-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | nmbdoplb.1 | |- T e. BndLinOp |
|
| Assertion | nmbdoplbi | |- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nmbdoplb.1 | |- T e. BndLinOp |
|
| 2 | fveq2 | |- ( A = 0h -> ( T ` A ) = ( T ` 0h ) ) |
|
| 3 | 2 | fveq2d | |- ( A = 0h -> ( normh ` ( T ` A ) ) = ( normh ` ( T ` 0h ) ) ) |
| 4 | fveq2 | |- ( A = 0h -> ( normh ` A ) = ( normh ` 0h ) ) |
|
| 5 | 4 | oveq2d | |- ( A = 0h -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` T ) x. ( normh ` 0h ) ) ) |
| 6 | 3 5 | breq12d | |- ( A = 0h -> ( ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) ) ) |
| 7 | bdopln | |- ( T e. BndLinOp -> T e. LinOp ) |
|
| 8 | 1 7 | ax-mp | |- T e. LinOp |
| 9 | 8 | lnopfi | |- T : ~H --> ~H |
| 10 | 9 | ffvelcdmi | |- ( A e. ~H -> ( T ` A ) e. ~H ) |
| 11 | normcl | |- ( ( T ` A ) e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
|
| 12 | 10 11 | syl | |- ( A e. ~H -> ( normh ` ( T ` A ) ) e. RR ) |
| 13 | 12 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. RR ) |
| 14 | 13 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) e. CC ) |
| 15 | normcl | |- ( A e. ~H -> ( normh ` A ) e. RR ) |
|
| 16 | 15 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. RR ) |
| 17 | 16 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) e. CC ) |
| 18 | normne0 | |- ( A e. ~H -> ( ( normh ` A ) =/= 0 <-> A =/= 0h ) ) |
|
| 19 | 18 | biimpar | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` A ) =/= 0 ) |
| 20 | 14 17 19 | divrec2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 21 | 16 19 | rereccld | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. RR ) |
| 22 | 21 | recnd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( 1 / ( normh ` A ) ) e. CC ) |
| 23 | simpl | |- ( ( A e. ~H /\ A =/= 0h ) -> A e. ~H ) |
|
| 24 | 8 | lnopmuli | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
| 25 | 22 23 24 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) = ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) |
| 26 | 25 | fveq2d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) = ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) ) |
| 27 | 10 | adantr | |- ( ( A e. ~H /\ A =/= 0h ) -> ( T ` A ) e. ~H ) |
| 28 | norm-iii | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ ( T ` A ) e. ~H ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
|
| 29 | 22 27 28 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h ( T ` A ) ) ) = ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 30 | normgt0 | |- ( A e. ~H -> ( A =/= 0h <-> 0 < ( normh ` A ) ) ) |
|
| 31 | 30 | biimpa | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( normh ` A ) ) |
| 32 | 16 31 | recgt0d | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 < ( 1 / ( normh ` A ) ) ) |
| 33 | 0re | |- 0 e. RR |
|
| 34 | ltle | |- ( ( 0 e. RR /\ ( 1 / ( normh ` A ) ) e. RR ) -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
|
| 35 | 33 34 | mpan | |- ( ( 1 / ( normh ` A ) ) e. RR -> ( 0 < ( 1 / ( normh ` A ) ) -> 0 <_ ( 1 / ( normh ` A ) ) ) ) |
| 36 | 21 32 35 | sylc | |- ( ( A e. ~H /\ A =/= 0h ) -> 0 <_ ( 1 / ( normh ` A ) ) ) |
| 37 | 21 36 | absidd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( abs ` ( 1 / ( normh ` A ) ) ) = ( 1 / ( normh ` A ) ) ) |
| 38 | 37 | oveq1d | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( abs ` ( 1 / ( normh ` A ) ) ) x. ( normh ` ( T ` A ) ) ) = ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) ) |
| 39 | 26 29 38 | 3eqtrrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) x. ( normh ` ( T ` A ) ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 40 | 20 39 | eqtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) = ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) ) |
| 41 | hvmulcl | |- ( ( ( 1 / ( normh ` A ) ) e. CC /\ A e. ~H ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
|
| 42 | 22 23 41 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( 1 / ( normh ` A ) ) .h A ) e. ~H ) |
| 43 | normcl | |- ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
|
| 44 | 42 43 | syl | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR ) |
| 45 | norm1 | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) |
|
| 46 | eqle | |- ( ( ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) e. RR /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) = 1 ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
|
| 47 | 44 45 46 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) |
| 48 | nmoplb | |- ( ( T : ~H --> ~H /\ ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
|
| 49 | 9 48 | mp3an1 | |- ( ( ( ( 1 / ( normh ` A ) ) .h A ) e. ~H /\ ( normh ` ( ( 1 / ( normh ` A ) ) .h A ) ) <_ 1 ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
| 50 | 42 47 49 | syl2anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` ( ( 1 / ( normh ` A ) ) .h A ) ) ) <_ ( normop ` T ) ) |
| 51 | 40 50 | eqbrtrd | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) ) |
| 52 | nmopre | |- ( T e. BndLinOp -> ( normop ` T ) e. RR ) |
|
| 53 | 1 52 | ax-mp | |- ( normop ` T ) e. RR |
| 54 | 53 | a1i | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normop ` T ) e. RR ) |
| 55 | ledivmul2 | |- ( ( ( normh ` ( T ` A ) ) e. RR /\ ( normop ` T ) e. RR /\ ( ( normh ` A ) e. RR /\ 0 < ( normh ` A ) ) ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
|
| 56 | 13 54 16 31 55 | syl112anc | |- ( ( A e. ~H /\ A =/= 0h ) -> ( ( ( normh ` ( T ` A ) ) / ( normh ` A ) ) <_ ( normop ` T ) <-> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 57 | 51 56 | mpbid | |- ( ( A e. ~H /\ A =/= 0h ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| 58 | 0le0 | |- 0 <_ 0 |
|
| 59 | 8 | lnop0i | |- ( T ` 0h ) = 0h |
| 60 | 59 | fveq2i | |- ( normh ` ( T ` 0h ) ) = ( normh ` 0h ) |
| 61 | norm0 | |- ( normh ` 0h ) = 0 |
|
| 62 | 60 61 | eqtri | |- ( normh ` ( T ` 0h ) ) = 0 |
| 63 | 61 | oveq2i | |- ( ( normop ` T ) x. ( normh ` 0h ) ) = ( ( normop ` T ) x. 0 ) |
| 64 | 53 | recni | |- ( normop ` T ) e. CC |
| 65 | 64 | mul01i | |- ( ( normop ` T ) x. 0 ) = 0 |
| 66 | 63 65 | eqtri | |- ( ( normop ` T ) x. ( normh ` 0h ) ) = 0 |
| 67 | 58 62 66 | 3brtr4i | |- ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) |
| 68 | 67 | a1i | |- ( A e. ~H -> ( normh ` ( T ` 0h ) ) <_ ( ( normop ` T ) x. ( normh ` 0h ) ) ) |
| 69 | 6 57 68 | pm2.61ne | |- ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |