This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A lower bound for the norm of a bounded linear Hilbert space operator. (Contributed by NM, 18-Feb-2006) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | nmbdoplb | |- ( ( T e. BndLinOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fveq1 | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( T ` A ) = ( if ( T e. BndLinOp , T , 0hop ) ` A ) ) |
|
| 2 | 1 | fveq2d | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( normh ` ( T ` A ) ) = ( normh ` ( if ( T e. BndLinOp , T , 0hop ) ` A ) ) ) |
| 3 | fveq2 | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( normop ` T ) = ( normop ` if ( T e. BndLinOp , T , 0hop ) ) ) |
|
| 4 | 3 | oveq1d | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( ( normop ` T ) x. ( normh ` A ) ) = ( ( normop ` if ( T e. BndLinOp , T , 0hop ) ) x. ( normh ` A ) ) ) |
| 5 | 2 4 | breq12d | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) <-> ( normh ` ( if ( T e. BndLinOp , T , 0hop ) ` A ) ) <_ ( ( normop ` if ( T e. BndLinOp , T , 0hop ) ) x. ( normh ` A ) ) ) ) |
| 6 | 5 | imbi2d | |- ( T = if ( T e. BndLinOp , T , 0hop ) -> ( ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) <-> ( A e. ~H -> ( normh ` ( if ( T e. BndLinOp , T , 0hop ) ` A ) ) <_ ( ( normop ` if ( T e. BndLinOp , T , 0hop ) ) x. ( normh ` A ) ) ) ) ) |
| 7 | 0bdop | |- 0hop e. BndLinOp |
|
| 8 | 7 | elimel | |- if ( T e. BndLinOp , T , 0hop ) e. BndLinOp |
| 9 | 8 | nmbdoplbi | |- ( A e. ~H -> ( normh ` ( if ( T e. BndLinOp , T , 0hop ) ` A ) ) <_ ( ( normop ` if ( T e. BndLinOp , T , 0hop ) ) x. ( normh ` A ) ) ) |
| 10 | 6 9 | dedth | |- ( T e. BndLinOp -> ( A e. ~H -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) ) |
| 11 | 10 | imp | |- ( ( T e. BndLinOp /\ A e. ~H ) -> ( normh ` ( T ` A ) ) <_ ( ( normop ` T ) x. ( normh ` A ) ) ) |