This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Double inverse law for groups. Lemma 2.2.1(c) of Herstein p. 55. (Contributed by NM, 31-Mar-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | grpinvinv.b | |- B = ( Base ` G ) |
|
| grpinvinv.n | |- N = ( invg ` G ) |
||
| Assertion | grpinvinv | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | grpinvinv.b | |- B = ( Base ` G ) |
|
| 2 | grpinvinv.n | |- N = ( invg ` G ) |
|
| 3 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ X e. B ) -> ( N ` X ) e. B ) |
| 4 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 5 | eqid | |- ( 0g ` G ) = ( 0g ` G ) |
|
| 6 | 1 4 5 2 | grprinv | |- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
| 7 | 3 6 | syldan | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( 0g ` G ) ) |
| 8 | 1 4 5 2 | grplinv | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) X ) = ( 0g ` G ) ) |
| 9 | 7 8 | eqtr4d | |- ( ( G e. Grp /\ X e. B ) -> ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) ) |
| 10 | simpl | |- ( ( G e. Grp /\ X e. B ) -> G e. Grp ) |
|
| 11 | 1 2 | grpinvcl | |- ( ( G e. Grp /\ ( N ` X ) e. B ) -> ( N ` ( N ` X ) ) e. B ) |
| 12 | 3 11 | syldan | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) e. B ) |
| 13 | simpr | |- ( ( G e. Grp /\ X e. B ) -> X e. B ) |
|
| 14 | 1 4 | grplcan | |- ( ( G e. Grp /\ ( ( N ` ( N ` X ) ) e. B /\ X e. B /\ ( N ` X ) e. B ) ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
| 15 | 10 12 13 3 14 | syl13anc | |- ( ( G e. Grp /\ X e. B ) -> ( ( ( N ` X ) ( +g ` G ) ( N ` ( N ` X ) ) ) = ( ( N ` X ) ( +g ` G ) X ) <-> ( N ` ( N ` X ) ) = X ) ) |
| 16 | 9 15 | mpbid | |- ( ( G e. Grp /\ X e. B ) -> ( N ` ( N ` X ) ) = X ) |