This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Any operation is associative outside its domain, if the domain doesn't contain the empty set. (Contributed by NM, 24-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | ndmov.1 | |- dom F = ( S X. S ) |
|
| ndmov.5 | |- -. (/) e. S |
||
| Assertion | ndmovass | |- ( -. ( A e. S /\ B e. S /\ C e. S ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ndmov.1 | |- dom F = ( S X. S ) |
|
| 2 | ndmov.5 | |- -. (/) e. S |
|
| 3 | 1 2 | ndmovrcl | |- ( ( A F B ) e. S -> ( A e. S /\ B e. S ) ) |
| 4 | 3 | anim1i | |- ( ( ( A F B ) e. S /\ C e. S ) -> ( ( A e. S /\ B e. S ) /\ C e. S ) ) |
| 5 | df-3an | |- ( ( A e. S /\ B e. S /\ C e. S ) <-> ( ( A e. S /\ B e. S ) /\ C e. S ) ) |
|
| 6 | 4 5 | sylibr | |- ( ( ( A F B ) e. S /\ C e. S ) -> ( A e. S /\ B e. S /\ C e. S ) ) |
| 7 | 1 | ndmov | |- ( -. ( ( A F B ) e. S /\ C e. S ) -> ( ( A F B ) F C ) = (/) ) |
| 8 | 6 7 | nsyl5 | |- ( -. ( A e. S /\ B e. S /\ C e. S ) -> ( ( A F B ) F C ) = (/) ) |
| 9 | 1 2 | ndmovrcl | |- ( ( B F C ) e. S -> ( B e. S /\ C e. S ) ) |
| 10 | 9 | anim2i | |- ( ( A e. S /\ ( B F C ) e. S ) -> ( A e. S /\ ( B e. S /\ C e. S ) ) ) |
| 11 | 3anass | |- ( ( A e. S /\ B e. S /\ C e. S ) <-> ( A e. S /\ ( B e. S /\ C e. S ) ) ) |
|
| 12 | 10 11 | sylibr | |- ( ( A e. S /\ ( B F C ) e. S ) -> ( A e. S /\ B e. S /\ C e. S ) ) |
| 13 | 1 | ndmov | |- ( -. ( A e. S /\ ( B F C ) e. S ) -> ( A F ( B F C ) ) = (/) ) |
| 14 | 12 13 | nsyl5 | |- ( -. ( A e. S /\ B e. S /\ C e. S ) -> ( A F ( B F C ) ) = (/) ) |
| 15 | 8 14 | eqtr4d | |- ( -. ( A e. S /\ B e. S /\ C e. S ) -> ( ( A F B ) F C ) = ( A F ( B F C ) ) ) |