This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Domain of multiplication on signed reals. (Contributed by NM, 25-Aug-1995) (New usage is discouraged.)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | dmmulsr | |- dom .R = ( R. X. R. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-mr | |- .R = { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
|
| 2 | 1 | dmeqi | |- dom .R = dom { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } |
| 3 | dmoprabss | |- dom { <. <. x , y >. , z >. | ( ( x e. R. /\ y e. R. ) /\ E. w E. v E. u E. f ( ( x = [ <. w , v >. ] ~R /\ y = [ <. u , f >. ] ~R ) /\ z = [ <. ( ( w .P. u ) +P. ( v .P. f ) ) , ( ( w .P. f ) +P. ( v .P. u ) ) >. ] ~R ) ) } C_ ( R. X. R. ) |
|
| 4 | 2 3 | eqsstri | |- dom .R C_ ( R. X. R. ) |
| 5 | 0nsr | |- -. (/) e. R. |
|
| 6 | mulclsr | |- ( ( x e. R. /\ y e. R. ) -> ( x .R y ) e. R. ) |
|
| 7 | 5 6 | oprssdm | |- ( R. X. R. ) C_ dom .R |
| 8 | 4 7 | eqssi | |- dom .R = ( R. X. R. ) |