This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma used in real number construction. (Contributed by NM, 26-Aug-1995)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | caovdir.1 | |- A e. _V |
|
| caovdir.2 | |- B e. _V |
||
| caovdir.3 | |- C e. _V |
||
| caovdir.com | |- ( x G y ) = ( y G x ) |
||
| caovdir.distr | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
||
| caovdl.4 | |- D e. _V |
||
| caovdl.5 | |- H e. _V |
||
| caovdl.ass | |- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
||
| caovdl2.6 | |- R e. _V |
||
| caovdl2.com | |- ( x F y ) = ( y F x ) |
||
| caovdl2.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
||
| Assertion | caovlem2 | |- ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) ) = ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | caovdir.1 | |- A e. _V |
|
| 2 | caovdir.2 | |- B e. _V |
|
| 3 | caovdir.3 | |- C e. _V |
|
| 4 | caovdir.com | |- ( x G y ) = ( y G x ) |
|
| 5 | caovdir.distr | |- ( x G ( y F z ) ) = ( ( x G y ) F ( x G z ) ) |
|
| 6 | caovdl.4 | |- D e. _V |
|
| 7 | caovdl.5 | |- H e. _V |
|
| 8 | caovdl.ass | |- ( ( x G y ) G z ) = ( x G ( y G z ) ) |
|
| 9 | caovdl2.6 | |- R e. _V |
|
| 10 | caovdl2.com | |- ( x F y ) = ( y F x ) |
|
| 11 | caovdl2.ass | |- ( ( x F y ) F z ) = ( x F ( y F z ) ) |
|
| 12 | ovex | |- ( A G ( C G H ) ) e. _V |
|
| 13 | ovex | |- ( B G ( D G H ) ) e. _V |
|
| 14 | ovex | |- ( A G ( D G R ) ) e. _V |
|
| 15 | ovex | |- ( B G ( C G R ) ) e. _V |
|
| 16 | 12 13 14 10 11 15 | caov42 | |- ( ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) F ( ( A G ( D G R ) ) F ( B G ( C G R ) ) ) ) = ( ( ( A G ( C G H ) ) F ( A G ( D G R ) ) ) F ( ( B G ( C G R ) ) F ( B G ( D G H ) ) ) ) |
| 17 | 1 2 3 4 5 6 7 8 | caovdilem | |- ( ( ( A G C ) F ( B G D ) ) G H ) = ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) |
| 18 | 1 2 6 4 5 3 9 8 | caovdilem | |- ( ( ( A G D ) F ( B G C ) ) G R ) = ( ( A G ( D G R ) ) F ( B G ( C G R ) ) ) |
| 19 | 17 18 | oveq12i | |- ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) ) = ( ( ( A G ( C G H ) ) F ( B G ( D G H ) ) ) F ( ( A G ( D G R ) ) F ( B G ( C G R ) ) ) ) |
| 20 | ovex | |- ( C G H ) e. _V |
|
| 21 | ovex | |- ( D G R ) e. _V |
|
| 22 | 1 20 21 5 | caovdi | |- ( A G ( ( C G H ) F ( D G R ) ) ) = ( ( A G ( C G H ) ) F ( A G ( D G R ) ) ) |
| 23 | ovex | |- ( C G R ) e. _V |
|
| 24 | ovex | |- ( D G H ) e. _V |
|
| 25 | 2 23 24 5 | caovdi | |- ( B G ( ( C G R ) F ( D G H ) ) ) = ( ( B G ( C G R ) ) F ( B G ( D G H ) ) ) |
| 26 | 22 25 | oveq12i | |- ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) ) = ( ( ( A G ( C G H ) ) F ( A G ( D G R ) ) ) F ( ( B G ( C G R ) ) F ( B G ( D G H ) ) ) ) |
| 27 | 16 19 26 | 3eqtr4i | |- ( ( ( ( A G C ) F ( B G D ) ) G H ) F ( ( ( A G D ) F ( B G C ) ) G R ) ) = ( ( A G ( ( C G H ) F ( D G R ) ) ) F ( B G ( ( C G R ) F ( D G H ) ) ) ) |