This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The identity element of the ring of polynomials. (Contributed by Mario Carneiro, 10-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mpl1.p | |- P = ( I mPoly R ) |
|
| mpl1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
||
| mpl1.z | |- .0. = ( 0g ` R ) |
||
| mpl1.o | |- .1. = ( 1r ` R ) |
||
| mpl1.u | |- U = ( 1r ` P ) |
||
| mpl1.i | |- ( ph -> I e. W ) |
||
| mpl1.r | |- ( ph -> R e. Ring ) |
||
| Assertion | mpl1 | |- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mpl1.p | |- P = ( I mPoly R ) |
|
| 2 | mpl1.d | |- D = { f e. ( NN0 ^m I ) | ( `' f " NN ) e. Fin } |
|
| 3 | mpl1.z | |- .0. = ( 0g ` R ) |
|
| 4 | mpl1.o | |- .1. = ( 1r ` R ) |
|
| 5 | mpl1.u | |- U = ( 1r ` P ) |
|
| 6 | mpl1.i | |- ( ph -> I e. W ) |
|
| 7 | mpl1.r | |- ( ph -> R e. Ring ) |
|
| 8 | eqid | |- ( I mPwSer R ) = ( I mPwSer R ) |
|
| 9 | eqid | |- ( Base ` P ) = ( Base ` P ) |
|
| 10 | 8 1 9 6 7 | mplsubrg | |- ( ph -> ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) ) |
| 11 | 1 8 9 | mplval2 | |- P = ( ( I mPwSer R ) |`s ( Base ` P ) ) |
| 12 | eqid | |- ( 1r ` ( I mPwSer R ) ) = ( 1r ` ( I mPwSer R ) ) |
|
| 13 | 11 12 | subrg1 | |- ( ( Base ` P ) e. ( SubRing ` ( I mPwSer R ) ) -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) ) |
| 14 | 10 13 | syl | |- ( ph -> ( 1r ` ( I mPwSer R ) ) = ( 1r ` P ) ) |
| 15 | 8 6 7 2 3 4 12 | psr1 | |- ( ph -> ( 1r ` ( I mPwSer R ) ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 16 | 14 15 | eqtr3d | |- ( ph -> ( 1r ` P ) = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |
| 17 | 5 16 | eqtrid | |- ( ph -> U = ( x e. D |-> if ( x = ( I X. { 0 } ) , .1. , .0. ) ) ) |