This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for metdscn . (Contributed by Mario Carneiro, 4-Sep-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| metdscn.j | |- J = ( MetOpen ` D ) |
||
| metdscn.c | |- C = ( dist ` RR*s ) |
||
| metdscn.k | |- K = ( MetOpen ` C ) |
||
| metdscnlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
||
| metdscnlem.2 | |- ( ph -> S C_ X ) |
||
| metdscnlem.3 | |- ( ph -> A e. X ) |
||
| metdscnlem.4 | |- ( ph -> B e. X ) |
||
| metdscnlem.5 | |- ( ph -> R e. RR+ ) |
||
| metdscnlem.6 | |- ( ph -> ( A D B ) < R ) |
||
| Assertion | metdscnlem | |- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) < R ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | metdscn.f | |- F = ( x e. X |-> inf ( ran ( y e. S |-> ( x D y ) ) , RR* , < ) ) |
|
| 2 | metdscn.j | |- J = ( MetOpen ` D ) |
|
| 3 | metdscn.c | |- C = ( dist ` RR*s ) |
|
| 4 | metdscn.k | |- K = ( MetOpen ` C ) |
|
| 5 | metdscnlem.1 | |- ( ph -> D e. ( *Met ` X ) ) |
|
| 6 | metdscnlem.2 | |- ( ph -> S C_ X ) |
|
| 7 | metdscnlem.3 | |- ( ph -> A e. X ) |
|
| 8 | metdscnlem.4 | |- ( ph -> B e. X ) |
|
| 9 | metdscnlem.5 | |- ( ph -> R e. RR+ ) |
|
| 10 | metdscnlem.6 | |- ( ph -> ( A D B ) < R ) |
|
| 11 | 1 | metdsf | |- ( ( D e. ( *Met ` X ) /\ S C_ X ) -> F : X --> ( 0 [,] +oo ) ) |
| 12 | 5 6 11 | syl2anc | |- ( ph -> F : X --> ( 0 [,] +oo ) ) |
| 13 | 12 7 | ffvelcdmd | |- ( ph -> ( F ` A ) e. ( 0 [,] +oo ) ) |
| 14 | eliccxr | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> ( F ` A ) e. RR* ) |
|
| 15 | 13 14 | syl | |- ( ph -> ( F ` A ) e. RR* ) |
| 16 | 12 8 | ffvelcdmd | |- ( ph -> ( F ` B ) e. ( 0 [,] +oo ) ) |
| 17 | eliccxr | |- ( ( F ` B ) e. ( 0 [,] +oo ) -> ( F ` B ) e. RR* ) |
|
| 18 | 16 17 | syl | |- ( ph -> ( F ` B ) e. RR* ) |
| 19 | 18 | xnegcld | |- ( ph -> -e ( F ` B ) e. RR* ) |
| 20 | 15 19 | xaddcld | |- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) e. RR* ) |
| 21 | xmetcl | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> ( A D B ) e. RR* ) |
|
| 22 | 5 7 8 21 | syl3anc | |- ( ph -> ( A D B ) e. RR* ) |
| 23 | 9 | rpxrd | |- ( ph -> R e. RR* ) |
| 24 | 1 | metdstri | |- ( ( ( D e. ( *Met ` X ) /\ S C_ X ) /\ ( A e. X /\ B e. X ) ) -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |
| 25 | 5 6 7 8 24 | syl22anc | |- ( ph -> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) |
| 26 | elxrge0 | |- ( ( F ` A ) e. ( 0 [,] +oo ) <-> ( ( F ` A ) e. RR* /\ 0 <_ ( F ` A ) ) ) |
|
| 27 | 26 | simprbi | |- ( ( F ` A ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` A ) ) |
| 28 | 13 27 | syl | |- ( ph -> 0 <_ ( F ` A ) ) |
| 29 | elxrge0 | |- ( ( F ` B ) e. ( 0 [,] +oo ) <-> ( ( F ` B ) e. RR* /\ 0 <_ ( F ` B ) ) ) |
|
| 30 | 29 | simprbi | |- ( ( F ` B ) e. ( 0 [,] +oo ) -> 0 <_ ( F ` B ) ) |
| 31 | 16 30 | syl | |- ( ph -> 0 <_ ( F ` B ) ) |
| 32 | ge0nemnf | |- ( ( ( F ` B ) e. RR* /\ 0 <_ ( F ` B ) ) -> ( F ` B ) =/= -oo ) |
|
| 33 | 18 31 32 | syl2anc | |- ( ph -> ( F ` B ) =/= -oo ) |
| 34 | xmetge0 | |- ( ( D e. ( *Met ` X ) /\ A e. X /\ B e. X ) -> 0 <_ ( A D B ) ) |
|
| 35 | 5 7 8 34 | syl3anc | |- ( ph -> 0 <_ ( A D B ) ) |
| 36 | xlesubadd | |- ( ( ( ( F ` A ) e. RR* /\ ( F ` B ) e. RR* /\ ( A D B ) e. RR* ) /\ ( 0 <_ ( F ` A ) /\ ( F ` B ) =/= -oo /\ 0 <_ ( A D B ) ) ) -> ( ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) <-> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) ) |
|
| 37 | 15 18 22 28 33 35 36 | syl33anc | |- ( ph -> ( ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) <-> ( F ` A ) <_ ( ( A D B ) +e ( F ` B ) ) ) ) |
| 38 | 25 37 | mpbird | |- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) <_ ( A D B ) ) |
| 39 | 20 22 23 38 10 | xrlelttrd | |- ( ph -> ( ( F ` A ) +e -e ( F ` B ) ) < R ) |